Leica GPS1200 Applications
 Field Manual

Version 5.0
English

- when it has to be right

Introduction
Purchase
Product
identification

Symbols

Trademarks

Validity of this manual

Congratulations on the purchase of a GPS1200 Series instrument.
To use the product in a permitted manner, please refer to the detailed safety directions in the User Manual.

The type and the serial number of your product are indicated on the type plate. Enter the type and serial number in your manual and always refer to this information when you need to contact your agency or Leica Geosystems authorized service workshop.

Type:
Serial No.:

The symbols used in this manual have the following meanings:

Type	Description			
				Important paragraphs which must be adhered to in practice as they enable the product to be used in a technically correct and efficient manner.

- Windows and Windows CE are a registered trademark of Microsoft Corporation
- CompactFlash and CF are trademarks of SanDisk Corporation
- Bluetooth is a registered trademark of Bluetooth SIG, Inc

All other trademarks are the property of their respective owners.

- This manual applies to all GPS1200 instruments. Differences between the various models are marked and described.
- The RX1200 is available as RX1210 or with touch screen functionality as RX1210T, RX1250X, RX1250Xc, RX1250T or RX1250Tc. The name RX1210 is used throughout the manual and may also represent the touch screen models. Only use the supplied stylus on the screens of the touch screen models.
- This manual covers standard real-time surveying applications. Refer to the GPS1200 Technical Reference Manual for information about other functionality available.

Available documentation

Name	Description	Format	
User Manual	All instructions required in order to operate the product to a basic level are contained in the User Manual. Provides an overview of the product together with technical data and safety directions.	x	x

Name	Description	Format	
System Field Manual	Describes the general working of the product in standard use. Intended as a quick reference field guide.	-	x
Application Programs	Describes specific onboard application programs in standard use. Intended as a Field Manual	x	x
	quick reference field guide. The Road- Runner application program is described in a separate manual.		x
Technical Reference	Overall comprehensive guide to the product and program functions. Included are detailed descriptions of special soft- ware/hardware settings and soft- ware/hardware functions intended for technical specialists.	-	

Refer to the following resources for all GPS1200 documentation and software:

- the SmartWorx DVD
- http://www.leica-geosystems.com/downloads

Table of Contents
In this manual Chapter Page
1 Application Programs - Getting Started 7
1.1 Starting an Application Program 7
1.2 Configuration of a Logfile 10
2 COGO 11
2.1 Overview 11
2.2 Accessing COGO 12
2.3 Configuring COGO 13
2.4 COGO Calculation - Inverse Method 15
2.4.1 Inverse Point - Point 16
2.4.2 Inverse Point - Line 17
2.4.3 Inverse Point - Arc 20
2.4.4 Inverse Point - Current Position 23
2.5 COGO Calculation - Traverse Method 25
2.6 COGO Calculation - Intersections Method 29
2.7 COGO Calculation - Line/Arc Calculations Method 33
2.8 COGO Calculation - Shift, Rotate \& Scale (Manual) Method 39
2.9 COGO Calculation - Shift, Rotate \& Scale (Match Pts) Method 44
2.10 COGO Calculation - Area Division 46
3 Determine Coordinate System - General 53
3.1 Overview 53
3.2 Configuring Determine Coordinate System 55
3.2.1 Configuring Determine Coordinate System - Normal 55
3.2.2 Configuring Determine Coordinate System - One Point Localisation 57
4 Determine Coordinate System - Normal 59
4.1 Determining a New/Updating a Coordinate System 59
4.2 Selecting/Editing a Pair of Matching Points 64
4.3 Transformation Results 65
5 Determine Coordinate System - One Point Localisation 67
5.1 Accessing Determine Coordinate System - One Point Localisation 67
5.2 Determine Coordinate System - Onestep/Twostep Transformation 68
5.2.1 Determining a New Coordinate System 68
5.2.2 Computing the Grid Scale Factor for Twostep Transformations 74
5.2.3 Computing the Height Scale Factor for Twostep Transformations 75
5.3 Determine Coordinate System - Classic 3D Transformation 76
5.4 Computing Required Azimuth 77
6 Reference Line 79
6.1 Overview 79
6.2 Configuring Reference Line 80
6.3 Managing Reference Lines/Arcs 82
6.3.1 Overview 82
6.3.2 Manually Entering a Reference Line/Arc 83
6.3.3 Selecting a Reference Line/Arc from the Job 85
6.3.4 Defining Reference Line/Arc Offsets 88
6.3.5 Defining Reference Line/Arc Slope 89
6.4 Measuring to a Reference Line/Arc 91
6.5 Staking to a Reference Line/Arc 95
6.6 Gridstaking to a Reference Line/Arc 98
7 Reference Plane 101
7.1 Overview 101
7.2 Configuring Reference Plane 103
7.3 Managing Reference Planes 104
7.4 Measuring Points to a Reference Plane 108
8 Stakeout 111
8.1 Overview 111
8.2 Configuring Stakeout 112
8.3 Staking Out 116
8.4 Stakeout Difference Limit Exceeded 119
9 Survey - General 121
9.1 Pre-Survey Preparations 121
9.2 Static Operations 123
9.3 Post-Processed Kinematic Operations 126
9.4 Real-Time Reference Operations 127
9.5 Real-Time Rover Operations 129
10 Survey - Auto Points 131
10.1 Overview 131
10.2 Configuring Auto Points 132
10.3 Auto Points for Post-Processed Kinematic and Real-Time Rover Operations 136
10.4 Offset Points of Auto Points 139
10.4.1 Overview 139
10.4.2 Configuring Offset Points 140
11 Survey - Hidden Points 141
11.1 Overview 141
11.2 Measuring Hidden Points 142
11.3 Hidden Point Measurement Including Heights 149
12 Survey Cross Section 153
12.1 Overview 153
12.2 Configuring Survey Cross Section 154
12.3 Surveying Cross Sections 156
12.4 Cross Section Templates 158
12.4.1 Accessing Cross Section Template Management 158
12.4.2 Creating/Editing a Cross Section Template 159
13 Volume Calculations 163
13.1 Overview 163
13.2 Configuring Volume Calculations 164
13.3 Survey Points 165
13.4 Triangulate Surfaces 167
13.5 Compute Volumes 170
14 Wake-Up 173
14.1 Overview 173
14.2 Creating a New Wake-Up Session/Editing a Wake-Up Session 175
Index 177

Application Programs - Getting Started

1.1 Starting an Application Program

Access an application program step-by-step

Step	Description
1.	Press PROG. The PROG key opens the application programs menu GPS1200 Programs.
2.	GPS1200 Programs Select an option in the menu.
3.	CONT (F1) to access XX Begin.
	Some application programs are protected. They are activated through a specific licence key. This can either be typed in in Main Menu: Tools...ILicence Keys or the first time the application program is started.
	Four application programs can be open at one time. XX Begin is shown for the application program opened first, but not for the following applica- tion programs.

XX Begin
SURVEY Survey Begin is shown as an example. Additional fields are available for particular application programs. The first screen of Wake-Up Sessions differs from XX Begin and is explained in the chapter on Wake-Up Sessions.

11:57	2-8
SURVEY Bursey Begin	
Job	Joh2位
Coord System Codelist	WGS 1984 <None>性

CONT (F1)
To accept changes and access the subsequent screen.
CONF (F2)
To configure the application program. CSYS (F6)

To select a different coordinate system.

Description of fields

Field	Option	Description
<Control Job:>	Choicelist	Available for Reference Line. The original points to be staked and the reference lines/arcs are stored in this job.
<Stakeout Job:>	Choicelist	Available for Stakeout. The job containing the points to be staked.
Job:	Choicelist	The active job. For Stakeout and Reference Line: Points which are occupied after staking out are stored in this job. The original points to be staked are not copied to this job.

Field	Option	Description			
<Coord System:>	Output	The coordinate system currently attached to the selected Job:.			
Codelist:	Choicelist	No codes are stored in the selected Job:. All codelists from Main Menu: Manage...lCodelists can be selected. Codes have already been stored in the selected <Job.>.			
<DTM Job:>	Choicelist	Available for Stakeout if <Use DTM: DTM only> and <Use DTM: DTM \& Stake Job> in STAKEOUT Configuration, Heights page. Available for Reference Line if <Heights: Use DTM Model> in REFLINE Configuration,			
Heights page.					
To select a DTM to be staked and to select the					
active DTM layer to be used. Heights are then					
staked out relative to the selected DTM.			$	$	Output
:---					

Description of fields for Determine Coordinate System

Field	Option	Description
Name:	User input	A unique name for the coordinate system. The name may be up to 16 characters in length and may include spaces. Input is mandatory. Entering the name of an existing coor- dinate system will allow that system to be updated.
<WGS84 Pts Job:>	Choicelist	The job from which the points with WGS84 coor- dinates will be taken.
<Local Pts Job:>	Choicelist	The job from which the points with local coordi- nates will be taken.
Method:	Choicelist	Method used to determine the coordinate system.

Next step

IF the application program	THEN
is to be accessed	CONT (F1) accepts the changes and starts the application program. Refer to the relevant chapters.

IF the application program	THEN
is to be configured	CONF (F2). Refer to the relevant chapters.

1.2 Configuration of a Logfile

Description

Access step-bystep

XX
Configuration, Logfile page

A logfile is a summary of the calculations done while using an application program. The logfile is written to the \DATA directory of the CompactFlash card or internal memory if fitted. The creation of a logfile can be activated while configuring an application program.

Step	Description
1.	Refer to "1.1 Starting an Application Program" to access XX Begin.
2.	CONF (F2) to access XX Configuration.
3.	PAGE (F6) until the Logfile page is active.

Description of fields

Field	Option	Description
<Write Logfile:>	Yes or No	To generate a logfile when the application program is exited.
<File Name:>	Choicelist	Available for <Write Logfile: Yes>. The name of the file to which the data should be written.
<Format File:>	Choicelist	Available for <Write Logfile: Yes>. A format file defines which and how data is written to a logfile. Format files are created using LGO.

Next step

PAGE (F6) changes to the first page on this screen.

2 COGO

2.1 Overview

Description

COGO calculation methods

Distances and

 azimuthsCOGO is an application program to perform coordinate geometry calculations such as

- coordinates of points. - distances between points.
- bearings between points.

The calculations can be made from

- existing point data in the job, known distances or known azimuths.
- manually occupied points.
- entered coordinates.

Changing coordinates of a point which has been previously used in COGO does not result in the point being recomputed.

The COGO calculation methods are:

- Inverse. - Arc calculations.
- Traverse.
- Intersections.
- Shift, Rotate \& Scale (Manual)
- Shift, Rotate \& Scale (Match Pts)
- Line calculations.
- Area Division

Type of distances: The choices are

- Ground
- Grid
- Ellipsoidal

Type of azimuths: The azimuths are grid azimuths relative to the local grid.

2.2 Accessing COGO

Access step-bystep

Step	Description
1.	Refer to "1.1 Starting an Application Program" to access COGO COGO Menu.
2.	COGO COGO Menu The COGO menu lists all COGO calculation methods and the option to end COGO. Highlight the COGO calculation method to be started.
3.	CONT (F1) to access the screen for the COGO calculation method.
$\sqrt{\sigma}$	The screens for each COGO calculation method can be accessed directly by pressing a configured hot key or USER. The currently active configura- tion set and job are used.

2.3 Configuring COGO

Access

COGO
Configuration, Parameters page

Step	Description
1.	Press PROG.
2.	Highlight COGO.
3.	CONT (F1)
4.	In COGO COGO Begin press CONF (F2) to access COGO Configura- tion.

The explanations for the softkeys given below are valid for all pages, unless otherwise stated.

CONT (F1)

To accept changes and return to the screen from where this screen was accessed.
SHIFT ABOUT (F5)
To display information about the program name, the version number, the date of the version, the copyright and the article number.

Description of fields

| Field | Option | Description |
| :--- | :--- | :--- | :--- |
| <Distance | | |
| Type:> | | |

Field	Option	Description
<Est Ht Qlty:>	User input	The estimated value for the height quality assigned to all calculated heights which is used for the averaging calculation.
<TPS Obs - TPS Obs Intersection> <Compute Ht:>	Output text Using Average, Upper Height or Use Lower Height	COGO method for which only the following configuration setting is valid.
Defines the height being used within TPS Obs - Obs Intersection.		

Next step

PAGE (F6) changes to the Residuals page.

COGO
 Configuration,
 Residuals page

This page applies to COGO Shift, Rotate \& Scale (Match Pts).
Description of fields

Field	Option	Description
Easting:, Northing: or Height:	User input	The limit above which Easting/Northing/Height residuals will be flagged as possible outliers.
<Residual Distbtn:>	None	The method by which the residuals of the control points will be distributed throughout the transfor- mation area. No distribution is made. Residuals remain with their associated points.
1/Distance xx	Distributes the residuals according to the distance between each control point and the newly transformed point. Distributes the residuals using a multiquadratic interpolation approach.	

Next step

PAGE (F6) changes to the Logfile page. Refer to "1.2 Configuration of a Logfile".
Azimuth: is used throughout this chapter. This should always be considered to also mean Bearing:.

2.4 COGO Calculation - Inverse Method

Diagram

Point - Line

Known
P0 Start point
P1 End point
P2 Offset point
Unknown
P3 Base point
d1 Offset-XX
d2 Δ Line-XX

Point - Arc

GPS12_121

Known
P0 Start point
P1 End point
P2 Offset point
Unknown
P3 Base point
d1 Offset-XX
d2 Δ ArcDist-XX

Point - Current Position

Known
P0 Current position
P1 Second known point
Unknown
a Direction from P0 to P1
d1 Slope distance between P0 and P1
d2 Horizontal distance between P0 and P1
d3 Height difference between P0 and P1

Access
Refer to "2.2 Accessing COGO" to access COGO Inverse.

2.4.1 Inverse Point - Point

COGO Inverse Input, Inverse page

The COGO calculation results are displayed on the same page.
----- is displayed for unavailable information, for example if a position only point is used, < Δ Height:> cannot be calculated.

STORE (F1)

To store the result.

SURVY (F5)

To manually occupy a point for the COGO calculation. Available if From: or To: is highlighted. SHIFT CONF (F2)

To configure the COGO application program.

SHIFT QUIT (F6)

To not store the calculated results and exits COGO calculation.

Description of fields

Field	Option	Description
From: or To:	Choicelist	The point ID of the known points. To type in coordinates for a known point open the choicelist when From: or To: is highlighted. Press NEW (F2) to create a new point.
Azimuth:	Output	The direction from the first to the second known point.
HDist-XX:	Output	The horizontal distance between the two known points.
< Height:>	Output	The height difference between the two known points.
<Slope Dist:>	Output	The slope distance between the two known points.
Grade:	Output	The grade between the two known points.
< Δ Easting:>	Output	The difference in Easting between the two known points.
< Northing:>	Output	The difference in Northing between the two known points.

Next step

Step	Description
1.	PAGE (F6) changes to the Map page.
2.	STORE (F1) stores the result. For <Write Logfile: Yes> in COGO Configuration, Logfile page the result is written to the logfile.

2.4.2 Inverse Point - Line

COGO
Inverse
Pt - Line Input, Inverse page

CALC (F1)

To calculate the inverse between point and line.
INV (F2)
To calculate the values for the azimuth, the distance and the offset from two existing points. Available if Azimuth: or HDist-XX: is highlighted.

LAST (F4)

To recall previous results from COGO inverse calculations. Available if Azimuth: or HDist-XX: is highlighted.
SURVY (F5)
To manually occupy a point for the COGO calculation. Available if <Start Point:>, <End Point:> or <Offset Point:> is highlighted. SHIFT CONF (F2)

To configure the COGO application program.
SHIFT MODIF (F4)
To type in numbers for the multiplication, division, addition and subtraction with the original azimuth, distance or offset value. The standard rules of mathematical operations apply. Available if Azimuth:, HDist-XX: or
Offset: is highlighted.

Description of fields

Field	Option	Description
Method:	2 Points	The method by which the line will be defined. Uses two known points to define the line.
<Start Point:>	Choicelist	Defines the line using a known point, a distance and an azimuth of the line.
<End Point:>	Choicelist	The start point of the line. The end point of the line. Available for <Method: 2 Points>.
Azimuth:	User input	The azimuth of the line. Available for <Method: Pt/Brg/Dist>.

Field	Option	Description
HDist-Grid:	User input	The horizontal distance from the start point to the end point of the line. Available for <Method: Pt/Brg/Dist>.
<Inverse to:>		The method by which the inverse will be calculated. Uses two known points to define the line. Sefines the line using a known point, a distance and an azimuth of the line.
OffsetPoint:	Choicelist	The offset point. Available for <Inverse To: Known Point>.

Next step

CALC (F1) calculates the result and accesses COGO Inverse Pt - Line Result.
COGO
Inverse
Pt - Line Result,
Result page

STORE (F1)
To store the result.
SURVY (F5)
To manually occupy a point for the COGO calculation. Available if <Start Point:>, <End Point:> or <Offset Point:> is highlighted.
SHIFT CONF (F2)
To configure the COGO application program.
SHIFT QUIT (F6)
To not store the calculated results and exits COGO calculation.

Description of fields

Field	Option	Description
<Offset Point:>	Output	The offset point.
< Δ Line-Grid:>	Output	Horizontal distance from start point to base point.
< OOffset-Grid:>	Output	Offset from base point to offset point. Positive to the right and negative to the left of the line.
<Offs Pt Brng:>	Output	Bearing of offset point to base point.
<Line Length:>	Output	Length of line from first to second point.
<Line Brng:>	Output	Bearing of line from first to second point.

Next step

Step	Description
1.	PAGE (F6) changes to the Map page.
2.	STORE (F1) stores the result. For <Write Logfile: Yes> in COGO Configuration, Logfile page the result is written to the logfile.

2.4.3 Inverse Point - Arc

cogo
Inverse
Pt - Arc Input, Inverse page

STORE (F1)

To store the result.
SURVY (F5)
To manually occupy a point for the COGO calculation. Available if From: or To: is highlighted.
SHIFT CONF (F2)
To configure the COGO application program.
SHIFT QUIT (F6)
To not store the calculated results and exits COGO calculation.

Description of fields

$\left.$| Field | Option | Description |
| :--- | :--- | :--- |
| Method: | 3 Points | 2 Points/Radius | | The method by which the arc will be |
| :--- |
| defined. |
| Uses three known points to define the arc. |
| Defines the arc using two known points |
| and a radius of the arc. |
| Defines the arc using two tangents and a |
| radius of the arc. |
| Defines the arc using two tangents and |
| the length of the arc. |
| Defines the arc using two tangents and |
| the chord of the arc. | \right\rvert\,

Field	Option	Description
Radius:	User input	The radius of the arc. Available for <Method: 2 Points/Radius>.
<Arc Length:>	User input	The length of the arc. Available for <Method: 2 Tgnts/Arc Lngt>.
<Chord Length:>	User input	The length of the chord. Available for <Method: $\mathbf{2}$ Tgnts/Chrd Lngt>.
<Inverse to:>	Choicelist	<Inverse To: Known Point> or <Inverse To: Current Position>.
<Offset Point:>	Choicelist	The offset point. Available for <Inverse To: Known Point>.

Next step

CALC (F1) calculates the result and accesses COGO Inverse Pt - Arc Result.

COGO
Inverse
Pt - Arc Result, Result page

SHIFT QUIT (F6)

To not store the calculated results and exits COGO calculation.

Description of fields

Field	Option	Description
<Offset Point:>	Output	The offset point.
< Δ ArcDist- Grid:>	Output	Horizontal distance along the arc from start point to base point.
< Δ Offset-Grid:>	Output	Offset from base point to offset point. Positive to the right and negative to the left of the arc.
<Offs Pt Brng:>	Output	Bearing of offset point from base point to offset point.
<Arc Radius:>	Output	Computed radius of arc.
<Arc Length:>	Output	Computed length of arc.

Next step

Step	Description
1.	PAGE (F6) changes to the Plot page.
2.	STORE (F1) stores the result. For < Write Logfile: Yes> in COGO Configuration, Logfile page the result is written to the logfile.

2.4.4 Inverse Point - Current Position

COGO
Inverse Pt Current Position, Inverse page

The COGO calculation results are displayed on the same page.
----- is displayed for unavailable information, for example if a position only point is used, < Δ Height:> cannot be calculated.

STORE (F1)

To store the result.
SURVY (F5)
To manually occupy a point for the COGO calculation. Available if From: or To: is highlighted. REVRS (F3)

To change From: and To: for the COGO calculation.
SHIFT CONF (F2)
To configure the COGO application program.
SHIFT QUIT (F6)
To not store the calculated results and exits COGO calculation.

Description of fields

Field	Option	Description
From: or To:	Choicelist	The point ID of the known points. To type in coordinates for a known point open the choicelist when From: or To: is highlighted. Press NEW (F2) to create a new point.
Azimuth:	Output	The direction from the first to the second known point.
HDist-XX:	Output	The horizontal distance between the two known points.
< Height:>	Output	The height difference between the two known points.
<Slope Dist:>	Output	The slope distance between the two known points.
Grade:	Output	The grade between the two known points.
< Easting:>	Output	The difference in Easting between the known point and the current position.
< Northing:>	Output	The difference in Northing between the known points.

Step	Description
1.	PAGE (F6) changes to the Map page.
2.	STORE (F1) stores the result. For <Write Logfile: Yes> in COGO Configuration, Logfile page the result is written to the logfile.

2.5 COGO Calculation - Traverse Method

Diagrams

Access
COGO
Traverse Input, Input page

COGO traverse calculation with offset for a single point

GPS12_106

Known

P0 Known point
a Direction from P0 to P1
d1 Distance between P0 and P1
d2 Positive offset to the right
d3 Negative offset to the left Unknown
P1 COGO point without offset
P2 COGO point with positive offset
P3 COGO point with negative offset

COGO traverse calculation without offset for multiple points

Known
P0 Known point
a1 Direction from P0 to P1
a2 Direction from P1 to P2
a3 Direction from P2 to P3
a4 Direction from P2 to P4
d1 Distance between P0 and P1
d2 Distance between P1 and P2
d3 Distance between P2 and P3
d4 Distance between P2 and P4
Unknown
P1 First COGO point
P2 Second COGO point
P3 Third COGO point - sideshot
P4 Fourth COGO point

Refer to "2.2 Accessing COGO" to access COGO Traverse Input.

CALC (F1)

To calculate the COGO point. INV (F2)

To calculate the values for the azimuth, the distance and the offset from two existing points. Available if
Azimuth:, HDist-XX: or
Offset: is highlighted.
SSHOT (F3)
To calculate the point as a sideshot.

LAST (F4)

To recall previous results from COGO inverse calculations. Available if Azimuth:, HDist-XX: or Offset: is highlighted.

SURVY (F5)

To manually occupy a point for the COGO calculation. Available if From: or Backsight: is highlighted.

SHIFT CONF (F2)

To configure the COGO application program.

SHIFT MODIF (F4)

To type in numbers for the multiplication, division, addition and subtraction with the original azimuth, distance or offset value. The standard rules of mathematical operations apply. Available if
Azimuth:, <Angle Right:>, HDist-XX: or Offset: is highlighted.

Description of fields

Field	Option	Description
Method:	Azimuth or Angle Right	The direction from the known point to the COGO point.
From:	Choicelist	The point ID of the known point. To type in coordinates for a known point open the choicelist when From: is highlighted. Press NEW (F2) to create a new point.
Backsight:	Choicelist	The point ID of a point used as backsight. Avail- able for <Method: Angle Right>.
<Angle Right:>	User input	The angle between Backsight: and the new COGO point to be calculated from the point selected as From:. A positive value is for clockwise angles. A negative value is for coun- terclockwise angles. Available for <Method: Angle Right>.
Azimuth:	Output	The direction from the known point to the COGO point. For <Method: Angle Right> this is calcu- lated from <Angle Right:>.
HDist-XX:	User input	The horizontal distance between the known point and the COGO point.

Field	Option	Description
Offset:	User input	The offset of the COGO point from the line of direction. A positive offset is to the right, a nega- tive offset is to the left.

Next step

CALC (F1) calculates the result and accesses COGO Traverse Results.

COGO
 Traverse Results, Result page

The calculated coordinates are displayed.

STORE (F1)

To store the result and return to COGO Traverse Input, Input page. COORD (F2)

To view other coordinate types.
STAKE (F5)
To access the Stakeout application program and stake out the calculated COGO point.
SHIFT ELL H (F2) and SHIFT ORTH (F2)
To change between the ellipsoidal and the orthometric height. Available for local coordinates.
SHIFT INDIV (F5) and SHIFT RUN (F5)
To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.
SHIFT QUIT (F6)
Does not store the COGO point and exits COGO calculations.

Description of fields

Field	Option	Description
<Point ID:>	User input	The identifier for the COGO point. The config- ured point ID template is used. The ID can be changed in the following way:
-To start a new sequence of point ID's type over the point ID. For an individual point ID independent of the ID template SHIFT INDIV (F5). SHIFT RUN (F5) changes back to the next free ID from the configured ID template.		
<Ortho Ht:> or <Local EII Ht:>	User input	The height of the known point used in the COGO calculation is suggested. A height value to be stored with the calculated point can be typed in.

Next step

PAGE (F6) changes to the Code page.
COGO The setting for <Thematc Codes:> in CONFIGURE Coding \& Linework deterTraverse Results, Code page
mines the availability of the fields and softkeys. They are identical to those of thematical coding with/without codelist. Refer to the GPS1200 Technical Reference Manual for information on coding.

Next step
PAGE (F6) changes to the Plot page.

2.6 COGO Calculation - Intersections Method

Diagrams

Bearing - Bearing

GPS12_064

Bearing - Distance

Distance - Distance

By Points

GPS12 107

Known
P0 First known point
P1 Second known point
a1 Direction from P0 to P2
a2 Direction from P1 to P2
Unknown
P2 COGO point

Known

P0 First known point
P1 Second known point
a Direction from P0 to P2
r Radius, as defined by the distance from P1 to P2

Unknown

P2 First COGO point
P3 Second COGO point

Known

P0 First known point
P1 Second known point
r1 Radius, as defined by the distance from P0 to P2
r2 Radius, as defined by the distance from P1 to P2

Unknown

P2 First COGO point
P3 Second COGO point

Known

P0 First known point
P1 Second known point
P2 Third known point
P3 Fourth known point
a Line from P0 to P1
b Line from P2 to P3
Unknown
P4 COGO point

Access

COGO
Intersection Input, Input page

Refer to "2.2 Accessing COGO" to access COGO Intersection Input.
The setting for Method: in this screen determines the availability of the subsequent fields and softkeys.
The softkeys are identical to those available for traverse COGO calculations. Refer to "2.5 COGO Calculation - Traverse Method" for information on the softkeys.

Description of fields

Field	Option	Description
Method:	Choicelist	The type of intersection COGO calculation.
<1st Point:>, <2nd Point:>, <3rd Point:> or <4th Point:>	Choicelist	The point ID of the known point. For <Method: By Points>, these are the start and end points of the lines. To type in coordinates for a known point open the choicelist when this field is highlighted. Press NEW (F2) to create a new point.
<1st TPS Stn:> or <2nd TPS Stn:>	Choicelist	The point ID of the known point. Only available for <Method: TPS Obs- TPS Obs>.
<TPS Measmnt:>	Choicelist	The point ID of the TPS measurement made from the selected station for <1st TPS Stn:> or <2st TPS Stn:>. Only available for <Method: TPS Obs- TPS Obs>.
Azimuth:	User input	The direction from the first known point to the COGO point. For <Method: Brng \& Brng> and <Method: Brng \& Dist>. For <Method: TPS Obs- TPS Obs> the option is an output field.
Offset:	User input	Input optional. For <Method: Brng \& Brng> and <Method: Brng \& Dist>: The offset of the COGO point from the line of direction. A positive offset is to the right, a negative offset is to the left.

Field	Option	Description - For <Method: By Points>: The offset of the line in the direction start point to end point. A positive offset is to the right. A negative offset is to the left.
HDist-XX:	User input	The horizontal distance between the known point and the COGO point. Available for Dist>.

Next step

CALC (F1) calculates the result and accesses COGO XX Results.
For <Method: Brng - Dist>, two results are calculated. They are displayed on the Result1 page and the Result2 page. For simplicity, the title Result is used in the following.

COGO XX Results, Result page

The calculated coordinates are displayed.
The majority of softkeys is identical to those available for traverse COGO calculations. Refer to "2.5 COGO Calculation - Traverse Method" for information on the identical softkeys.

STORE (F1)

To store the result and return to COGO Intersection Input, Input page. For <Method: Brng - Dist>, each result must be stored individually on the relevant page.

COORD (F2)

To view other coordinate types.
RSLT1 (F3) or RSLT2 (F3)
To view the first and second result. Available for <Method: Brng-Dist>. STAKE (F5)

To access the Stakeout application program and stake out the calculated COGO point.
SHIFT ELL H (F2) and SHIFT ORTH (F2) To change between the ellipsoidal and the orthometric height. Available for local coordinates.
SHIFT INDIV (F5) and SHIFT RUN (F5) To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.

Description of fields

Field	Option	Description
<Point ID:>	User input	The identifier for the COGO point. The config- ured point ID template is used. The ID can be changed in the following way: - To start a new sequence of point ID's type over the point ID. For an individual point ID independent of the ID template SHIFT INDIV (F5). SHIFT RUN (F5) changes back to the next free ID from the configured ID template.
<Ortho Ht:> or <Local EII Ht:>	User input	The height of the first point used in the COGO calculation is suggested. A height value to be stored with the calculated point can be typed in. For <Method: TPS Obs- TPS Obs> the option is an output field.
<Ht Computed:>	Output	The height modus being used in the COGO calculation.

Next step

PAGE (F6) changes to the Code page.

COGO XX Results, Code page

The setting for <Thematc Codes:> in CONFIGURE Coding \& Linework determines the availability of the fields and softkeys. They are identical to those of thematical coding with/without codelist. Refer to the GPS1200 Technical Reference Manual for information on coding.

Next step

PAGE (F6) changes to the Plot page.

2.7 COGO Calculation - Line/Arc Calculations Method

5

Diagrams
Line Calculation

The functionality of all screens and fields are similar for both the COGO line and COGO arc calculations. For simplicity, both COGO calculation methods are explained in this chapter. The screen names, field names and explanations for lines are used. If required, additional information is given for COGO arc calculations.

Base Point

Known
P0 <Start Point:>
P1 <End Point:>
P2 <Offset Point:>
Unknown
P3 Base point
d1 Offset-XX:
d2 < Line-XX:>
Offset Point

Segmentation

GPS12_144

Line divided by <Method: No. of Segments>

P0 <Start Point:>

P1 <End Point:>
d Equally spaced segments result from dividing a line by a certain number of points.

Line divided by <Method: Segment Length>

P0 <Start Point:>
P1 <End Point:>
d1 <Seg Length:>
d2 Remaining segment

Diagrams
Arc Calculation

Arc Center

Known

P0 \quad <Start Point:>
P1 <End Point:>
d1 <Arc Radius:>
Unknown

P2 Arc center
d2 <Arc Length:>

Base Point

GPS12_121

Known
P0 <Start Point:>
P1 <End Point:>
P2 <Offset Point:>

Unknown

P3 Base point
d1 < Δ Offset-XX:>
d2 < Δ ArcDist-XX:>

Offset Point

GPS12_121

Known

P0	<Start Point:>
P1	<End Point:>
d1	< Δ Offset-XX:>
d2	< Δ ArcDist-XX:>
Unknown	
P2	<Offset Point:>
P3	Base point

Access

COGO
Line Calculations
Input, Input page

Refer to "2.2 Accessing COGO" to access COGO Line Calculations Input.
The setting for Task: and Method: in this screen determines the availability of the subsequent fields.
The softkeys are identical to those available for traverse COGO calculations. Refer to "2.5 COGO Calculation - Traverse Method" for information on the softkeys.

Description of fields

Field	Option	Description
Task:	Choicelist	The type of line/arc COGO calculation.
Method:		The method by which the line will be defined. Uses three known points to define the arc.

Field	Option	Description
	2 Points/Radius 2 Tgnts/Radius 2 Tgnts/Arc Lngt 2 Tgnts/Chrd Lngt	Defines the arc using two known points and a radius of the arc. Defines the arc using two tangents and a radius of the arc. Defines the arc using two tangents and the length of the arc. Defines the arc using two tangents and the chord of the arc.
<Start Point:>	Choicelist	The start point of the line/arc.
<Second Point:>	Choicelist	The second point of the arc.
<End Point:>	Choicelist	The end point of the line/arc. Available for <Method: 2 Points>.
<Point 1:>	Choicelist	A point on the first tangent. Available for <Method: 2 Tgnts/Radius>, <Method: 2 Tgnts/Arc Lngt> and <Method: 2 Tgnts/Chrd Lngt>.
<PI Point:>	Choicelist	The point of intersection of the two tangents. Available for <Method: 2 Tgnts/Radius>, <Method: 2 Tgnts/Arc Lngt> and <Method: 2 Tgnts/Chrd Lngt>.
<Point 2:>	Choicelist	A point on the second tangent. Available for <Method: 2 Tgnts/Radius>, <Method: 2 Tgnts/Arc Lngt> and <Method: 2 Tgnts/Chrd Lngt>.
Azimuth:	User input	The azimuth of the line. Available <Method: Pt/Brg/Dist>.
HDist-XX:	User input	The horizontal distance from the start point to the end point of the line. Available for <Method: Pt/Brg/Dist>.
Radius:	User input	The radius of the arc. Available for <Method: 2 Points/Radius>.
<Arc Length:>	User input	The length of the arc. Available for <Method: 2 Tgnts/Arc Lngt>.
<Chord Length:>	User input	The length of the chord. Available for <Method: 2 Tgnts/Chrd Lngt>.
<Offset Point:>	Choicelist	The offset point. Available for <Task: Calc Base Point>.
< Δ Line-XX:>	User input	Horizontal distance from start point to base point. Available for <Task: Calc Offset Point>.

Field	Option	Description
< Δ ArcDist- XX:>	User input	Horizontal distance along the arc from start point to base point. Available for <Task: Calc Offset Point>.
Offset-XX:	User input	Offset from base point to offset point. Positive to the right and negative to the left of the line. Avail- able for <Task: Calc Offset Point>.
< $\mathbf{\Delta O f f s e t - ~}$ XX:>	User input	Offset from base point to offset point. Positive to the right and negative to the left of the arc. Avail- able for <Task: Calc Offset Point>.

Next step

IF	THEN		
<Task: Calc Arc	CALC (F1) calculates the result. Refer to paragraph "COGO Center>, <Task: Calc Base Point>		
XX Results, Result page".			
or <Task: Calc			
Offset Point>		\quad	<Task: Segmenta-
:---			
tion>		CALC (F1) accesses COGO Define Segmentation. Refer to	
:---			
paragraph "COGO Define Segmentation".			

COGO
XX Results, Result page

The calculated coordinates are displayed.
The softkeys are identical to those available for traverse COGO calculations. Refer to "2.5 COGO Calculation - Traverse Method" for information on the softkeys.

Description of fields

Field	Option	Description
<Point ID:>	User input	The identifier for the COGO point. The config- ured point ID template is used. The ID can be changed in the following way: - To start a new sequence of point ID's type over the point ID. For an individual point ID independent of the ID template SHIFT INDIV (F5). SHIFT RUN (F5) changes back to the next free ID from the configured ID template.
<Ortho Ht:> or <Local EII Ht:>	User input	The height of the start point of the line/arc is suggested. A height value to be stored with the calculated point can be typed in.
<Offset Point:>	Output	Point ID of offset point. Available for <Task: Calc Base Point>.
< Line-XX:>	Output	Horizontal distance from start point to base point. Available for <Task: Calc Base Point>.

Field	Option	Description
< Δ ArcDist- XX:>	Output	Horizontal distance along the arc from start point to base point. Available for <Task: Calc Base Point>.
< Δ Offset- XX:>	Output	Offset from base point to offset point. Positive to the right and negative to the left of the line. Avail- able for <Task: Calc Base Point>.
<Line Length:>	Output	Length of line from start point to end point. Avail- able for <Task: Calc Offset Point>.
<Line Brng:>	Output	Bearing of line from start point to end point. Available for <Task: Calc Offset Point>.
<Arc Radius:>	Output	Computed radius of arc. Available for <Task: Calc Arc Center> and <Task: Calc Offset Point>.
<Arc Length:>	Output	Computed length of arc. Available for <Task: Calc Arc Center> and <Task: Calc Offset Point>.
<Offs Pt Brng:>	Output	Bearing of offset point from base point to offset point. Available for <Task: Calc Offset Point>.

Next step

PAGE (F6) changes to the Code page.
COGO
XX Results, Code page

COGO
Define Segmentation

The setting for <Thematc Codes:> in CONFIGURE Coding \& Linework determines the availability of the fields and softkeys. They are identical to those of thematical coding with/without codelist. Refer to the GPS1200 Technical Reference Manual for information on coding.

Next step

PAGE (F6) changes to the Plot page.
Description of fields

Field	Option	Description
Method:	Delta Angle	How the line is to be divided. Refer to paragraph "Diagrams Line Calculation". To divide the arc by an angular value.
<Line Length:>	Output	Calculated line length between the selected <Start Point:> and <End Point:>.
<Arc Length:>	Output	Computed length of arc.
<No. of Segs:>	User input or output	The number of segments for the line.
<Seg Length:>	User input or output	The calculated length of each segment or the required segment length.

Field	Option	Description
<Last Seg Lgth:>	Output	Available for <Method: Segment Length>. The length of the remaining segment.
<Delta Angle:>	User input	The angular value by which new points will be defined on the arc.
<Start PtID:>	User input	The point ID to be assigned to the first new point on the line.
<PtID Inc:>	User input	<Start PtID:> is incremented numerically for the second, third, etc. point on the line.

Next step

CALC (F1) to access COGO Segmentation Results.

COGO
Segmentation Results

The coordinates of the new points are calculated. The heights are computed along the line assuming a linear slope between <Start Point:> and <End Point:>.

Field	Option	Description
<Number of Segments:>	Output	Describes the number of resulting segments for the line including the remaining segment, if it applies.
<Last Segment Lgth:>	Output	Available for <Method: Segment Length>. The length of the remaining segment.

Next step

PAGE (F6) changes to the Plot page.

2.8 COGO Calculation - Shift, Rotate \& Scale (Manual) Method

Description

Diagrams

GPS12_155
CPS12_156

Shift

a Height
b Easting
P1-P2 Known point
P1'-P2' Shifted point

Rotation
a Height
b Easting
P0 <Rotation Pt:>
P1-P2 Known point
P1'-P2' Rotated point

Scale

a Height
b Easting
P1 <Rotation Pt:>, can be held fixed, all other points are then scaled from here
P2-P5 Known point P2'-P5' Scaled point

Refer to "2.2 Accessing COGO" to access COGO Shift, Rotate \& Scale.

CALC (F1)
To perform the shift, rotation and scale calculation and to continue with the subsequent screen. Calculated COGO points are not yet stored.
ADD (F2)
To add all points from the active job to the list. Selected sort and filter settings apply.

ADD 1 (F3)

To add one point from the active job to the list. Selected sort and filter settings apply.

REMOV (F4)

To remove the highlighted point from the list. The point itself is not deleted.

MORE (F5)

To display information about the codes if stored with any point, the time and the date of when the point was stored and the 3D coordinate quality and the class.
SHIFT REM A (F4)
To remove all points from the list. The points itself are not deleted.
SHIFT RANGE (F5)
To define a range of points from the active job to be added to the list.
Listed are points which have been selected for shifting, rotating and/or scaling.

COGO
Shift, Rotate \&
Scale,
Shift page

Next step

PAGE (F1) accesses COGO Shift, Rotate \& Scale, Shift page.
The setting for Method: in this screen determines the availability of the subsequent fields.
The softkeys are identical to those available for traverse COGO calculations. Refer to "2.5 COGO Calculation - Traverse Method" for information on the softkeys.

Description of fields

Field	Option	Description
Method:	Choicelist	The method by which the shift in Δ Easting, Δ Northing and Δ Height will be determined.
From:	Choicelist	Available for <Method: Use 2 Points>. The point ID of the first known point for calculating the shift.

Field	Option	Description
To:	Choicelist	Available for <Method: Use 2 Points>. The point ID of the second known point for calcu- lating the shift.
Azimuth:	User input	Available for <Method: Enter Bng,Dst,Ht>. The azimuth defines the direction of the shift.
HDist-XX:	User input	Available for <Method: Enter Bng,Dst,Ht>. The amount of shift from the original point to the calculated COGO points.
< Easting:>	User input or output	The amount of shift in East direction.
< Northing: >	User input or output	The amount of shift in North direction.
< Height:>	User input or output	The amount of shift in height.

Next step

PAGE (F6) accesses COGO Shift, Rotate \& Scale, Rotate page.
The softkeys are identical to those available for traverse COGO calculations. Refer to "2.5 COGO Calculation - Traverse Method" for information on the softkeys.

Description of fields

Field	Option	Description
Method:	Choicelist	The method by which the rotation angle will be determined.
<Rotation Pt:>	Choicelist	The point around which all points will be rotated.
<Existing Az:>	User input	Available for <Method: Computed>. A known direction before rotating.
<New Azimuth:>	User input	Available for <Method: Computed>. A known direction after rotating.
Rotation:	User input or output	The amount by which the points will be rotated.

Next step
PAGE (F6) accesses COGO Shift, Rotate \& Scale, Scale page.

COGO
Shift, Rotate \&
Scale,
Scale page

COGO

Shift, Rotate \&
Scale Store, General page

The softkeys are identical to those available for traverse COGO calculations. Refer to "2.5 COGO Calculation - Traverse Method" for information on the softkeys.

Description of fields

Field	Option	Description
Method:	Choicelist	The method by which the scale factor will be determined.
<Existing Dist:>	User input	Available for <Method: Computed>. A known distance before scaling. This value is used for calculating the scale factor.
<New Dist:>	User input	Available for <Method: Computed>. A known distance after scaling. This value is used for calculating the scale factor.
Scale:	User input or output	The scale factor used in the calculation.
<Scale From Pt:>	No	Scaling is performed by multiplying the original coordinates of the points by Scale:. Scale: is applied to the coordinate difference of all points relative to <Rotation Pt:> selected on the Rotation page. The coordinates of <Rotation Pt:> will not change.

Next step

CALC (F1) performs the shift, rotation and scale calculation and accesses COGO Shift, Rotate \& Scale Store.

Description of fields

Field	Option	Description
<Pts Selected:>	Output	The number of selected points having been shifted, rotated and/or scaled.
<Store Job:>	Choicelist	The calculated COGO points will be stored in this job. The original points are not copied to this job.
<Add Identi- fier:>	Yes or No	Activates the use of additional identifiers for the point ID's of the calculated COGO points.
Identifier:	User input	The identifier with up to four characters is added in front of or at the end of the ID of the calculated COGO points.
<Prefix/Suffi x:>	Prefix	Adds the setting for Identifier: in front of the original point ID's.

Next step

STORE (F1) accesses COGO Shift, Rotate \& Scale Results, Result page.

COGO
Shift, Rotate \&
Scale Results
Result page

Description of fields

Field	Option	Description
<No. of New Pts:>	Output	Number of new points created.
<No. of Skipped Pts>	Output	Number of points which were skipped either due to not being able to convert coordinates or points with identical point ID's already existed in <Store Job:>.

Next step

CONT (F1) returns to COGO Shift, Rotate \& Scale.

2.9 COGO Calculation - Shift, Rotate \& Scale (Match Pts) Method

Description

Access
COGO
Match Common Points (n)

The COGO calculation shift, rotate \& scale (match pts) applies shifts and/or rotation and/or scale to one or several known points. The shifts and/or rotation and/or scale are calculated from selected points using a 2D Helmert tranformation.
The number of pairs of points matched determines whether the shift, rotation and scale values are computed.

Refer to "2.2 Accessing COGO" to access COGO Match Common Points (n).
This screen provides a list of points chosen from the active job. The points are used for the determination of the 2D Helmert transformation. Unless there is no pair of matching points in the list all softkeys are available.

CALC (F1)

To confirm the selections, compute the transformation and continue with the subsequent screen.

NEW (F2)

To match a new pair of points. This pair is added to the list. A new point can be manually occupied. Refer to paragraph "Match points step-bystep".
EDIT (F3)
To edit the highlighted pair of matched points.
DEL (F4)
To delete the highlighted pair of matched points from the list.
MATCH (F5)
To change the type of match for a highlighted pair of matched points.
RESID (F6)
To display a list of the matched points used in the transformation calculation and their associated residuals.
SHIFT PARAM (F5)
To define the parameters to be used in the 2D transformation. Refer to paragraph "Fix parameters".

Description of columns

Column	Description
Source Pt	The point ID of the points of origin for the calculation of the shifts and/or rotation and/or scale.
Target Pt	The point ID of the target points for the calculation of the shifts and/or rotation and/or scale.

Column	Description
Match	The type of match to be made between the points. This information is used in the transformation calculation. Position \& Height, Posi- tion only, Height only or None. None removes matched common points from the transformation calculation but does not delete them from the list. This can be used to help improve residuals.

Next step

CALC (F1). The calculated shift, rotation and scale values are displayed in COGO Shift, Rotate \& Scale. They cannot be edited. The remaining functionality of the calculation is very similar to COGO calculation shift, rotate \& scale (manual). Refer to "2.8 COGO Calculation - Shift, Rotate \& Scale (Manual) Method".

Match points step-by-step

Fix parameters

Matching new points and editing matched points is very similar.

Step	Description
1.	Refer to "2.2 Accessing COGO" to access COGO Match Common Points.
2.	NEW (F2) or EDIT (F3)
3.	COGO Choose Matching Points or COGO Edit Matching Points <Source Pt:> A point of origin for the calculation of the shifts and/or rota- tion and/or scale. <Target Pt:> A target point for the calculation of the shifts and/or rotation and/or scale. <Match Type:> The type of match to be made between the points selected in <Source Pt:> and <Target Pt:>. Position \& Height, Position Only, Height Only or None. Select the points to be matched.
ك	SURVY (F5). To manually occupy a point and store it in the active job.
4.	CONT (F1) returns to COGO Match Common Points (n) and adds a new pair of matched points to the matched points list.

The values for fixing the shifts, the rotation and the scale are displayed.

Next step

IF	AND	THEN
a field displays ----	the parameter needs to be fixed to a value	highlight the field. Enter the value of the parameter. FIX (F4).
a field displays a value	the parameter needs to be calculated	highlight the field. ADJST (F4).
all parameters are configured	-	CONT (F1) to return to COGO Match Common Points (n).

2.10 COGO Calculation - Area Division

Diagrams

Area division method	Divide:	Using:	Shift:
1.	By Defined Line	Parallel Line	By Distance
2.	By Percentage	Parallel Line	-
3.	By Area	Parallel Line	-

P0 <Point A:> of defined line
P1 <Point B:> of defined line
P2 First new COGO point
P3 Second new COGO point
d HDist-XX:

Area division method	Divide:	Using:	Shift:
1.	By Defined Line	Perpendic Line	By Distance
2.	By Percentage	Perpendic Line	-
3.	By Area	Perpendic Line	-

P0 <Point A:> of defined line
P1 <Point B:> of defined line
P2 First new COGO point
P3 Second new COGO point
d HDist-XX:

Area division method	Divide:	Using:	Shift:
1.	By Defined Line	Parallel Line	Through Point

P0 <Point A:> of defined line
P1 <Point B:> of
defined line
P2 <Through Point:>; in this case it is a known point of the existing border
P3 New COGO point
d HDist-XX:

Area division method	Divide:	Using:	Shift:
1.	By Defined Line	Perpendic Line	Through Point

P0 <Point A:> of defined line
P1 <Point B:> of defined line
P2 <Through Point:>; in this case it is a known point of the existing border
P3 New COGO point
d HDist-XX:

Area division method	Divide:	Using:	Shift:
1.	By Percentage	Swing Line	-
2.	By Area	Swing Line	-

P0 First new COGO point
P1 Second new COGO point
P2 <Rotation Pnt:>
a Azimuth:

Refer to "2.2 Accessing COGO" to access COGO Choose Area to be Divided.

COGO
Choose Area to be Divided

Description of fields

$\left.$| Field | Option | Description |
| :--- | :--- | :--- |
| <Area to
 Use:> | Select Existing | To use an area from the Job: selected in
 COGO COGO Begin. The area can be edited
 and a new area can be created from points
 existing in the Job:.
 To survey points that do not exist in the job yet.
 The points will be added to a new area. |
| Survey New | | |
| Area | | |\quad| Choicelist or |
| :--- |
| user input |\quad| To select the area to be divided or to enter a |
| :--- |
| name for the new area. | \right\rvert\, | <No. of |
| :--- |
| Points:> |\quad Output \quad Number of points forming the area..

Next step

IF	THEN
<Area to Use: Select Existing>	CONT (F1) accesses COGO Define How to Divide Area. Refer to paragraph "COGO Define How to Divide Area, Input page".
<Area to Use: Survey New Area>	CONT (F1) accesses COGO Survey: Job Name. Points to be added to the new area can be surveyed. COGO Survey: Job Name
lTo stop surveying the area and to store the area: DONE (F4) and then STORE (F1).	
	To return to COGO Choose Area to be Divided: ESC.

COGO

Define How to Divide Area, Input page

CALC (F1)
To perform the area division and to continue with the subsequent screen. Calculated COGO points are not yet stored.
INV (F2)
To calculate the value for the distance from two existing points. Available if HDist-XX: is highlighted.
SIZE (F3) and PERC (F3)
To display the size and the percentage of the sub-area.

LAST (F4)

To select the value for the distance from previous COGO inverse calculations. Available if HDist-XX: is highlighted.

SURVY (F5)

To manually occupy a point for the COGO calculation. Available if <Point A:>, <Point B:>, <Rotation Pnt:> or <Through Point:> is highlighted.

SHIFT CONF (F2)

To configure the COGO application program.

Description of fields

Field	Option	Description			
<Divide By:>	Choicelist	This field defines how the size of the sub area is defined.			
Using:	Parallel Line	The border will be parallel to a line defined by <Point A:> and <Point B:>.			
	Perpendic Line	The border will be perpendicular to a line defined by <Point A:> and <Point B:>. The border will be a line rotated around <Rota-			
tion Pnt:> by Azimuth:.			$	$	Swing Line
:---					
XX:>					

Field	Option	Description
<Point B:>	Choicelist	The second point of the line which is used as the reference for a new parallel or perpendicular border.
Shift:	By Distance	Available for <Divide By: Defined Line>. The new border will run in a certain distance from the line defined by <Point A:> and <Point B:>. The new border will run through a point defined in <Through Point:>.
<Through Point:>	Choicelist	Available for <Shift: Through Point>. The point through which the new border will run.
<Rotation Pnt:>	Choicelist	Available for <Using: Swing Line>. The point around which the new border will rotate by Azimuth:.
Azimuth:	Output	Available for <Using: Swing Line>. The angle of the new border from <Rotation Pnt:> to the new COGO point.
HDist-XX:	User input or output	The distance from the line defined by <Point A:> and <Point B:> to the new border.

Next step

CALC (F1) performs the area division and accesses COGO Results of Area Division.

COGO
Results of Area
Division, Result page

Description of fields

Field	Option	Description
<Area Ratio:>	Output	The ratio of the size of the two sub areas in percent.
<Area 1-XX:>	Output	The size of the first sub area in m^{2}.
<Area 2-XX:>	Output	The size of the second sub area in m^{2}.

Next step
 CONT (F1) accesses COGO Area Division Results.

COGO
Area Division Results, ResultX page

The coordinates of the intersection points of the new border with the original area are displayed.

STORE (F1)

To store the two results and to return to COGO Choose Area to be Divided once both points are stored. COORD (F2)

To view other coordinate types.
RSLT1 (F3) or RSLT2 (F3)
To view the first and second result. STAKE (F5)

To stake out the calculated COGO point.
SHIFT ELL H (F2) and SHIFT ORTH (F2)
To change between the ellipsoidal and the orthometric height.

SHIFT INDIV (F5) and SHIFT RUN (F5)

To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.

Next step

STORE (F1) stores the results and accesses COGO Choose Area to be Divided.
For <Write Logfile: Yes> in COGO Configuration, Logfile page the result is written to the logfile.

3.1 Overview

Description

Requirements to determine a transformation

Requirements for control points

GPS measured points are always stored based on the global geocentric datum known as WGS 1984. To convert the WGS 1984 coordinates into local coordinates a coordinate system needs to be created. Part of the coordinate system is the transformation used to convert coordinates from the WGS 1984 datum to the local datum.

The Determine Coordinate System application program allows:

- the parameters of a new transformation to be determined.
- the parameters of an existing transformation to be recomputed.

To determine a transformation it is necessary to have common control points whose positions are known in both WGS 1984 coordinates and local coordinates. The more points that are common between datums the more accurately the transformation parameters can be calculated. Depending on the type of transformation used, details about the map projection, the local ellipsoid and a local geoidal model may also be needed.

- The control points used for the transformation should surround the area for which the transformation is to be applied. It is not good practice to survey or convert coordinates outside of the area covered by the control points as extrapolation errors may be introduced.
- When a geoid field file and/or a CSCS field file is used in the determination of a coordinate system, the control points for the calculation must fall within the areas of the field files.

With one common control point, it is possible to calculate a Classic 3D transformation, as long as the rotations and the scale parameter are fixed. Such a transformation fits perfectly in the vicinity of the common control point, but is degraded by the distance from that point.

Two different methods for determining a coordinate system are available:

Coordinate system determination method	Characteristic	Description
Normal	Number of control points needed	One or more control points for both the WGS 1984 and the local datum. Onestep, Twostep or Classic 3D, depending on number of control points and available information.
One point localisation	Number of control points needed	One control point for both the WGS 1984 and the local datum.

Coordinate system determination method	Characteristic	Description
	Transformation to use	- Onestep or Twostep when information about the necessary rotations and scale factor is known. Classic 3D when the rotations are to be set to zero and the scale factor to one.

3.2 Configuring Determine Coordinate System

3.2.1 Configuring Determine Coordinate System - Normal

Access step-bystep

DET C SYS
Configuration, Method page

Step	Description
1.	Press PROG.
2.	Highlight Determine Coordinate System.
3.	CONT (F1)
4.	CONF (F2) to access DET C SYS Configuration.
5.	In DET C SYS Configuration, Method page select <Default Method: Normal>.

The explanations for the softkeys given below are valid for all pages, unless otherwise stated.

		CONT (F1)
Configuration		To accept changes and return to the
Methnd Residuals. Default Method:	C.lassir. 3n	screen from where this screen was
Default		accessed.
Transformation:	Classic 3D 䙺	FIX (F4) or ADJST (F4)
Default Height Mode		Available for Classic 3D page unless <Transf Model:> is highlighted. To
Default Match	Pos \& Height ${ }^{1}$	define which parameters are
CONT	$\begin{aligned} & \text { Q1a } \hat{1} \\ & \text { PAGE } \end{aligned}$	computed or fixed in the Classic 3D transformation.

Description of fields

Field	Option	Description
<Default Method:>	Normal or One Pt Localistn	Method used to determine the coordinate system.
<Default Transforma- tion:>	Onestep, Twostep or Classic 3D	The default transformation to be used when determining the coordinate system.
<Default Height Mode:>	Orthometric or Ellipsoidal	The default height type to be used when deter- mining the coordinate system.
<Default Match:>	Pos \& Height, Pos Only, Height Only or <None>	Options available depend on the choice made for <Default Transformation:>. Point parame- ters to be matched between points in both datums.

[^0]DET C SYS Configuration, Residuals page

DET C SYS
Configuration, Classic 3D page

Description of fields

Field	Option	Description
Easting:	User input	The limit above which Easting residuals will be flagged as possible outliers.
Northing:	User input	The limit above which Northing residuals will be flagged as possible outliers.
Height:	User input	The limit above which Height residuals will be flagged as possible outliers.
<Default Residual Distbtn:>	None, 1/Distance xx or Multiquadratic	The method by which the residuals of control points will be distributed throughout the transfor- mation area.

Next step

PAGE (F6) changes to the Classic 3D page.
The settings on this page define the parameters to be used in a Classic 3D transformation.

IF the value for a field is	THEN the value for this parameter will be
----	calculated.
any number	fixed to that value.

Next step

CONT (F1) returns to DET C SYS Determine Coord System Begin.

3.2.2 Configuring Determine Coordinate System - One Point Localisation

Access step-bystep

DET C SYS
Configuration, Method page

DET C SYS
Configuration, Onestep page

Step	Description
1.	Press PROG.
2.	Highlight Determine Coordinate System.
3.	CONT (F1)
4.	CONF (F2) to access DET C SYS Configuration.
5.	In DET C SYS Configuration, Method page select <Default Method: One Pt Localistn>.

The softkeys are identical to those available for <Default Method: Normal>. Refer to "3.2.1 Configuring Determine Coordinate System - Normal" for information on softkeys.

Description of fields

Field	Option	Description
<Default Method:>	Normal or One Pt Localistn	Method used to determine the coordinate system.
<Default Transforma- tion:>	Onestep, Twostep or Classic 3D	The default transformation to be used when determining the coordinate system.
<Default Height Mode:>	Orthometric or Ellipsoidal	The default height mode to be used when deter- mining the coordinate system.

Next step

PAGE (F6) changes to the Onestep page.
Description of fields

Field	Option	Description
<Default Rotation:>	Use WGS84 North User Entered Convergnce Angle Two WGS84 Points	Rotate to North as defined by WGS 1984. Rotation can be manually typed in. Angle between grid North and geodetic North at a certain point. Rotation defined by two points on the WGS 1984 datum.
<Default Height SF:>	User Entered Known WGS84 Pt	Height scale factor can be manually typed in. Height scale factor defined by a known point on the WGS 1984 datum.

Field	Option Known WGS84 Ht	Description Height scale factor defined by the known height of a point on the WGS 1984 datum.

Next step

PAGE (F6) changes to the Twostep page.
Some fields are identical to those on the Onestep page. Additional fields are explained here.
Description of fields

$\left.$| Field | Option | Description |
| :--- | :--- | :--- |
| <Default
 Scale:> | User Entered | Scale factor can be manually typed in. |
| <Deflt Grid
 SF:> | User Entered or
 Known Local Pt | Compute the combined grid and height scale
 factor. | | Available for <Default Scale: Compute CFS>. |
| :--- |
| factor of the known por computing the grid scale | \right\rvert\, | |
| :--- |

Next step

PAGE (F6) changes to the Classic 3D page.

Description of fields

Field	Option	Description		
<Default	Use WGS84 Pt Local Height:>	The source of the height information to use in Pt Ht		the transformation.
:---				

Next step
 CONT (F1) returns to DET C SYS Determine Coord System Begin.

4.1 Determining a New/Updating a Coordinate System

Access step-bystep

DET C SYS
Step 1: Choose Transform Type

Step	Description
1.	Press PROG.
2.	Highlight Determine Coordinate System.
3.	CONT (F1).
4.	In DET C SYS Determine Coord System Begin, select <Method: Normal>.
5.	CONT (F1) to access DET C SYS Step 1: Choose Transform Type.

If a coordinate system was chosen to be edited in DET C SYS Determine Coord System Begin, pressing CONT (F1) accesses DET C SYS Step 3: Match Points (n).

Description of fields

Field	Option	Description
<Transfrm Name:>	User input	A unique name for the coordinate system. If a coordinate system is being updated then its name is displayed.
<Transfrm Type:>	Onestep, Twostep or Classic 3D Output	Available when determining a new coordinate system. Available when updating a coordinate system. The transformation type shown is the same as the transformation used in the existing system.
<Height Mode:>	Orthometric or Ellipsoidal Output	Available when determining a new coordinate system. Available when updating a coordinate system. The height type shown is the same as the mode used in the existing system.

[^1]DET C SYS
Step 2: Choose Parameters

This screen contains different fields, depending on what transformation type was chosen in DET C SYS Step 1: Choose Transform Type.

Description of fields

Field	Option	Description
<Geoid Model:>	Choicelist	The geoid model to be used in the transforma- tion. Geoid models from MANAGE Geoid Models can be selected.
<Pre Trans- form:>	Choicelist	The pre-transformation to use for the prelimi- nary 3D transformation.
Ellipsoid:	Choicelist Output	The ellipsoid to use in the transformation. The ellipsoid being used by a fixed projection when selected in Projection:.
<Projec- tion:>	Choicelist	The projection to use in the transformation.
<CSCS Model:>	Choicelist	The CSCS model to use in the transformation.

Next step

CONT (F1) continues to DET C SYS Step 3: Match Points (n).
This screen provides a list of points chosen from <WGS84 Pts Job:> and <Local
Pts Job:>. The number of control points matched between both jobs is indicated in the title, for example DET C SYS Step 3: Match Points (4). Unless there is no pair of matching points in the list all softkeys are available.

11:43				$\therefore B A$
Step 3: Mat	Poin	ts (4)		区
WhSR4 Pts	nnal	Pts		Matrh
101	101			P \& H
200	200			P \& H
300	300			P \& H
400	400			P \& H
				Q1a
CALC NEW	EDIT	DEL	MATCH	AUTO

CALC (F1)
To confirm the selections, compute the transformation and continue with the subsequent screen.
NEW (F2)
To match a new pair of points. This pair is added to the list. A new point can be manually occupied.
EDIT (F3)
To edit the highlighted pair of matched points.
DEL (F4)
To delete the highlighted pair of matched points from the list.
MATCH (F5)
To change the type of match for a highlighted pair of matched points.

AUTO (F6)

To scan both jobs for points that have the same point ID. Points with matching point ID's are added to the list.
SHIFT PARAM (F5)
To configure Classic 3D transformation parameters. Available for <Transfrm Type: Classic 3D> in DET C SYS Step 1: Choose Transform Type.

Description of columns

Column	Description
WGS84 Pts	The point ID of the points chosen from <WGS84 Pts Job:>.
Local Pts	The point ID of the points chosen from <Local Pts Job:>.
Match	The type of match to be made between the points. This information is used in the transformation calculation. Position \& Height, Posi- tion only, Height only or None. - For <Transfrm Type: Onestep> or <Transfrm Type: Twostep> possible options are P \& H, P only, H only or None. For <Transfrm Type: Classic 3D> possible options are P \& H or None. None removes matched common points from the transformation calculation but does not delete them from the list. This can be used to help improve residuals.

Next step

CALC (F1) computes the transformation and continues to DET C SYS Step 4: Check Residuals.

DET C SYS
Step 4: Check Residuals

Displays a list of the matched points used in the transformation calculation and their associated residuals.

CONT (F1)
To accept the residuals and to continue with the subsequent screen.
RESLT (F3)
To view results of the transformation. MORE (F5)

To display information about height residuals.

Description of columns

Column	Description
WGS84 Pts	The point ID of the points chosen from <WGS84 Pts Job:>.
East, North and Height	The Easting, Northing and Height residuals. If positions or heights were not used in the transformation calculation then ----- will be displayed.
\square	Indicates residuals that exceed the residual limit defined in DET C SYS Configuration, Residuals page.
$!$	Indicates the largest residual in East, North and Height.

Next step

IF the residuals are	THEN
unacceptable	ESC to return to DET C SYS Step 3: Match Points (n). Matched points can be edited, deleted or temporarily removed from the list and the transformation recalculated.
acceptable	CONT (F1) to continue to DET C SYS Step 5: Store Coord System.

DET C SYS

Step 5: Store Coord System, Summary page

Description of fields

Field	Option	Description
Name:	User input	The name of the coordinate system can be changed.
<Transfrm Type:>	Output	The type of transformation used, as defined in DET C SYS Step 1: Choose Transform Type.
<Matched Pts:>	Output	Number of matched points, as defined in DET C SYS Step 3: Match Points (n).
Easting:, Northing: and Height:	Output	Largest Easting, Northing and Height residuals from the transformation calculation.

Next step

PAGE (F6) changes to the Coord System page.

DET C SYS
Step 5: Store Coord System,
Coord System page

Description of fields common to all transformations

Field	Option	Description
Residuals:	None, 1/Distance Multiquadratic	The method by which the residuals of the control points will be distributed throughout the transfor- mation area.

Refer to paragraph "DET C SYS Step 2: Choose Parameters" for descriptions of all other fields.

Next step

STORE (F1) stores the coordinate system to the DB-X and attaches it to the <WGS84 Pts Job:> selected in DET C SYS Determine Coord System Begin, replacing any coordinate system attached to this job. <WGS84 Pts Job:> becomes the active job.

4.2 Selecting/Editing a Pair of Matching Points

Access step-by-
step

Step	Description
1.	"4.1 Determining a New/Updating a Coordinate System". Follow the instructions to access DET C SYS Step 3: Match Points (n).
2.	NEW (F2)/EDIT (F3) to access DET C SYS Choose Matching Points/DET C SYS Edit Matching Points.

DET C SYS
XX Matching Points
Editing a pair of matched points is similar to creating a new pair of matching points. For simplicity, the screen is called DET C SYS XX Matching Points and differences are outlined.

CONT (F1)
To accept the matching points and to continue with the subsequent screen.
SURVY (F5).
To manually occupy a point and store it in the job.

Description of fields

Field	Option	Description
<WGS84 Point:>	Choicelist	A WGS 1984 control point. All WGS 1984 stored points from MANAGE Data: Job Name can be selected.
<Known Point:>	Choicelist	A local control point. All local stored points from MANAGE Data: Job Name of any class, except NONE, can be selected.
<Match Type:>	Pos \& Ht, Pos Only, Height Only or None	The type of match to be made between the points selected in <WGS84 Point:> and <Known Point:>. The options available depend on <Transfrm Type:> in DET C SYS Step 1: Choose Transform Type.

Next step

Step	Description
1.	Select a control point form both jobs that occupy the same position on the different datums.
2.	CONT (F1) returns to DET C SYS Step 3: Match Points (n) and adds a new line of matched points to the matched points list.

4.3 Transformation Results

Access step-bystep

Step	Description
1.	"4.1 Determining a New/Updating a Coordinate System". Follow the instructions to access DET C SYS Step 4: Check Residuals.
2.	RESLT (F3) to access DET C SYS Transformation Results.

DET C SYS
Transformation
Results,
Position page;
DET C SYS
Transformation
Results,
Parameters page

Description of fields

Field	Option	Description
<Shift dX:>	Output	Shift in X direction.
<Shift dY:>	Output	Shift in Y direction.
<Shift dZ:>	Output	Shift in Z direction.
Rotation:	Output	Rotation of transformation.
<Rotation X:>, <Rotation Y:> or <Rotation Z:>	Output	Rotation around the X, Y or Z axis.
Scale:	Output	Scale factor used in transformation. Either true scale or ppm.
<Rot Orig X:>	Output	Position in the X direction of the origin of rota- tion.
<Rot Orig Y:>	Output	Position in the Y direction of the origin of rota- tion.

DET C SYS
Transformation
Results, Height page

DET C SYS
Transformation
Results,
Rotn Origin page

Next step

IF	THEN
<Transfrm Type: Onestep> or <Transfrm Type: Twostep>	PAGE (F6) changes to the Height page.
<Transfrm Type: Classic 3D>	PAGE (F6) changes to the Rotn Origin page.

Description of fields

Field	Option	Description
<Slope in X:>	Output	Tilt of the transformation in the X direction.
<Slope in Y:>	Output	Tilt of the transformation in the Y direction.
<Height Shift:>	Output	Shift in height between WGS 1984 datum and local datum.

Next step

CONT (F1) returns to DET C SYS Step 4: Check Residuals.
Description of fields

Field	Option	Description
<Transf Model:>	Output	Classic 3D transformation model used for the transformation as defined in DET C SYS Classic 3D Parameters.
<Rot Orig X:>, <Rot Orig Y:> and <Rot Orig Z:>	Output	Available for <Transf Model: Molodensky- Bad>. Position in the X, Y and Z direction of the origin of rotation.

Next step

CONT (F1) returns to DET C SYS Step 4: Check Residuals.

5.1 Accessing Determine Coordinate System One Point Localisation

Access step-bystep

DET C SYS
Step 1: Choose Transform Type
Azimuth: is used throughout this chapter. This should always be considered to also mean Bearing:.

Step	Description
1.	Press PROG.
2.	Highlight Determine Coordinate System.
3.	CONT (F1).
4.	In DET C SYS Determine Coord System Begin, select <Method: One Pt Localistn>.
5.	CONT (F1) to access DET C SYS Step 1: Choose Transform Type.

Description of fields

Field	Option	Description
<Transfrm Name:>	User input	A unique name for the coordinate system. The name may be up to 16 characters in length and may include spaces.
<Transfrm Type:>	Onestep, Twostep or Classic 3D	The type of transformation to use when deter- mining a coordinate system.
<Height Mode:>	Orthometric or Ellipsoidal	The height mode to be used in the determination of a coordinate system

Next step

IF	THEN
<Transfrm Type: Onestep> or <Transfrm Type: Twostep>	CONT (F1) to access DET C SYS Step 2: Choose Parame- ters. Refer to "5.2 Determine Coordinate System - Onestep/Twostep Transformation".
<Transfrm Type: Classic 3D>	CONT (F1) to access DET C SYS Step 2: Choose Parame- ters. Refer to "5.3 Determine Coordinate System - Classic 3D Transformation".

5．2 Determine Coordinate System－ Onestep／Twostep Transformation

5．2．1 Determining a New Coordinate System

Access

DET C SYS
Step 2：Choose Parameters

Refer to＂5．1 Accessing Determine Coordinate System－One Point Localisation＂to access DET C SYS Step 2：Choose Parameters．

Description of fields

Field	Option	Description
＜Pre Trans－ form：＞	Choicelist	Available for＜Transfrm Type：Twostep＞．The pre－transformation to be used for the preliminary 3D transformation．
＜Ellipsoid：＞	Choicelist	Available for＜Transfrm Type：Twostep＞．The ellipsoid to be used in the transformation． The ellipsoid being used by a fixed projection when selected in＜Projection：＞．
＜Projec－ tion：＞	Choicelist	Available for＜Transfrm Type：Twostep＞．The projection to be used in the transformation．
＜Geoid Model：＞	Choicelist	The geoid model to be used in the transforma－ tion．

Next step
 CONT（F1）continues to DET C SYS Step 3：Choose Common Point．

$\frac{11: 51}{\text { DET C SYS }}$		
Step 3：Choose Common Point \times CONT（F1）		
Match Type	Pos anlydul	To confirm the selections and to continue with the subsequent
WGS84 Point Known Point		
Match Height	Yes 性	SURVY（F5）
WGS84 Point	200 出	Available for＜WGS84 Point：＞being
Known Point	200 星	highlighted．To manually occupy a
	Q1a	point and store it in＜WGS84 Pts
CONT	SURVY｜	Job：＞．

Description of fields

Field	Option	Description
<WGS84 Point:>	Choicelist	The point ID of the horizontal and/or vertical control point chosen from <WGS84 Pts Job:>
<Known Point:>	Choicelist	The point ID of the horizontal and/or vertical control point chosen from <Local Pts Job:>.
<Match Height:>	Yes or No	Available for <Match Type: Pos Only>. Acti- vates the determination of the vertical shift from a separate pair of matching points.

Next step

CONT (F1) continues to DET C SYS Step 4: Determine Rotation.

DET C SYS

Step 4: Determine Rotation

This screen contains different fields, depending on the Method: selected. The explanations for the softkeys given below are valid as indicated.

Available for <Method: Two WGS84
Points> and <Method: User
Entered>. To compute an azimuth between two local points.
SURVY (F5)
To manually occupy a point and store it in <WGS84 Pts Job:>. Available when certain fields are highlighted.

Description of common fields

Field	Option	Description
Method:	Use WGS84 North, User Entered, Convergnce Angle or Two WGS84 Points	Method by which the rotation angle for the trans- formation is determined.

For <Method: Use WGS84 North>
Description of fields

Field	Option	Description
Rotation:	Output	Transformation will be rotated to North as defined by the WGS 1984 datum. North is 0.00000°.

For <Method: User Entered>
Description of fields

Field	Option	Description
Rotation:	User input	Allows the orientation of the transformation to be manually typed in or calculated in DET C SYS Compute Required Azimuth.

For <Method: Convergnce Angle>

Description of fields

Field	Option	Description
<Coord System:>	Choicelist	Coordinate system to provide the direction of grid North in the area where the control point used for determining the local coordinate system, is located.
<WGS84 Point:>	Choicelist	WGS 1984 point of which the convergence angle will be calculated.
Rotation:	Output	The rotation of the transformation calculated as 0.00000° minus the computed convergence angle. The field is updated as <Coord System:> and <WGS84 Point:> are changed.

For <Method: Two WGS84 Points>
Description of fields

Field	Option	Description
<Point 1:>	Choicelist	First point to use for computation of Azimuth:.
<Point 2:>	Choicelist	Second point to use for computation of Azimuth:.
Azimuth:	Output	Computed azimuth between <Point 1:> and <Point 2:>.
<Reqd Azimuth:>	User input	The required grid azimuth, computed between two local points.

Field	Option	Description
Rotation:	Output	The rotation of the transformation calculated as <Reqd Azimuth> minus <Azimuth>. The field is updated as <Point 1:>, <Point 2:> and <Reqd Azimuth:> are changed.

Next step
 CONT (F1) continues to DET C SYS Step 5: Determine Scale.

DET C SYS

Step 5: Determine Scale

This screen contains different fields, depending on the Method: selected. The explanations for the softkeys given below are valid as indicated. The scale is calculated using the distance from the centre of the ellipsoid to the WGS 1984 point selected in DET C SYS Step 3: Choose Common Point and the height of this point above the WGS 1984 ellipsoid for <Transfrm Type: Onestep> or the local ellipsoid for <Transfrm Type: Twostep>.

13:36 DET C SYS	
Step 5: Determine Scale	
Method	Known WGS84 Pt价
WG584 Point	: 101性
Scale (Reduced to	$\text { Ellipsoid) }^{0.9999257}$

CONT (F1)
To confirm the selections and to continue with the subsequent screen.
GRID (F2)
To compute the grid scale factor. Available for <Transfrm Type:
Twostep> where <Method:
Compute CSF>.
HIGHT (F3)
To compute the height scale factor.
Available for <Transfrm Type:
Twostep> where <Method:
Compute CSF>.
SCALE (F4) or PPM (F4)
To switch between Scale: displaying the true scale and displaying the ppm.
SURVY (F5)
To manually occupy a point and store it in <WGS84 Pts Job:>. Available for <Transfrm Type: Onestep> where <Method: Known WGS84 Pt:> when <WGS84 Point:> is highlighted.

For <Transfrm Type: Onestep>
Description of fields

Field	Option	Description
Method:	User Entered, Known WGS84 Pt or Known WGS84 Ht	Method of determining the scale factor of the transformation.

For <Transfrm Type: Onestep> and <Method: User Entered>
Description of fields

Field	Option	Description
Scale:	User input	Allows the scale factor to be typed in manually.

For <Transfrm Type: Onestep> and <Method: Known WGS84 Pt> Description of fields

Field	Option	Description
<WGS84 Point:>	Choicelist	WGS 1984 point from which the scale factor will be calculated. The scale factor is calculated using the height of the known WGS 1984 point.
Scale:	Output	The calculated scale factor.

For <Transfrm Type: Onestep> and <Method: Known WGS84 Ht> Description of fields

Field	Option	Description
<Known Height:>	User input	The WGS 1984 height of a point can be typed in. The scale factor is calculated using this height.
Scale:	Output	The calculated scale factor.

For <Transfrm Type: Twostep>
Description of fields

Field	Option	Description
Method:	User Entered or Compute CSF	The default method for determining the Combined Scale Factor to be used in the trans- formation process.
<Grid SF:>	Output	Available for <Method: Compute CSF>. The grid scale factor as computed in DET C SYS Compute Grid Scale Factor.
<Height SF:>	Output	Available for <Method: Compute CSF>. The height scale factor as computed in DET C SYS Compute Height Scale Factor.

Field	Option	Description
<Combined	User input	Available for <Method: User Entered>. The scale factor can be typed in. SF:>
Output	Available for <Method: Compute CSF>. The product of the grid scale factor and the height scale factor.	

Next step

CONT (F1) continues to DET C SYS Step 6: Store Coord System.

DET C SYS
Step 6: Store Coord

System

The shifts in X and Y direction, the rotation, the scale factor of the transformation and the position of the origin of rotation is displayed.

STORE (F1)

To store the coordinate system to the DB-X, attach the system to <WGS84 Pts Job:> that was selected in DET C SYS Determine Coord System Begin and return to GPS1200 Main Menu.
SCALE (F4) or PPM (F4)
To switch between Scale: displaying the true scale and displaying the ppm.

Next step

STORE (F1) stores the coordinate system and returns to GPS1200 Main Menu.

5.2.2 Computing the Grid Scale Factor for Twostep Transformations

Access step-by-

 step| Step | Description |
| :---: | :--- |
| 1. | Refer to "5.1 Accessing Determine Coordinate System - One Point Local-
 isation" to access DET C SYS Step 1: Choose Transform Type. |
| 2. | Select <Transfrm Type: Twostep>. |
| 3. | Continue to DET C SYS Step 5: Determine Scale. |
| 4. | Select <Method: Compute CSF>. |
| 5. | GRID (F2) to access DET C SYS Compute Grid Scale Factor. |

DET C SYS Compute Grid Scale Factor

Description of fields

Field	Option	Description
Method:	User Entered Known Local Pt	Grid scale factor can be manually typed in. Grid scale factor is computed using the position of a known local point.
<Local Point:>	Choicelist	Available for <Method: Known Local Pt>. The point ID of the point chosen from <Local Pts Job:>. The grid scale factor is computed using this point and the projection selected in DET C SYS Step 2: Choose Parameters.
<Grid SF:>	User input	Available for <Method: User Entered>. To type in the grid scale factor. Available for <Method: Known Local Pt>. The computed grid scale factor.

Next step

CONT (F1) returns to DET C SYS Step 5: Determine Scale.

5.2.3 Computing the Height Scale Factor for Twostep Transformations

Access step-bystep

DET C SYS
Compute Height
Scale Factor

Step	Description
1.	Refer to "5.1 Accessing Determine Coordinate System - One Point Local- isation" to access DET C SYS Step 1: Choose Transform Type.
2.	Select <Transfrm Type: Twostep>.
3.	Continue to DET C SYS Step 5: Determine Scale.
4.	Select <Method: Compute CSF>.
5.	HIGHT (F3) to access DET C SYS Compute Height Scale Factor.

Description of fields

Field	Option	Description
Method:	User Entered Known Local Pt	Height scale factor can be manually typed in. Height scale factor is computed using the height of a known local point. Keight scale factor is computed using an entered height value.
<Known Point:>	Choicelist	Available for <Method: Known Local Pt>. The point ID of the point chosen from <Local Pts Job:> from which the height scale factor is computed.
<Known Height:>	User input	Available for <Method: Known Local Ht>. A known local height.
<Height SF:>	User input	Available for <Method: User Entered>. To type in the height scale factor.
	Output	Available for <Method: Known Local Pt> and <Method: Known Local Ht>. The computed height scale factor.

Next step

CONT (F1) returns to DET C SYS Step 5: Determine Scale.

5.3 Determine Coordinate System - Classic 3D Transformation

Access

DET C SYS
Step 2: Choose
Parameters

DET C SYS
Step 3: Choose
Common Point

DET C SYS
Step 4: Store Coord System

Refer to "5.1 Accessing Determine Coordinate System - One Point Localisation" to access DET C SYS Step 2: Choose Parameters.

Description of fields

Refer to "5.2 Determine Coordinate System - Onestep/Twostep Transformation" paragraph "DET C SYS Step 2: Choose Parameters" for information about the fields available.

Next step

CONT (F1) continues to DET C SYS Step 3: Choose Common Point.

CONT (F1)
To confirm the selections and to continue with the subsequent screen.
SURVY (F5)
To manually occupy a point and store it in <WGS84 Pts Job:>.

Description of fields

Field	Option	Description
<WGS84 Point:>	Choicelist	The point ID of the control point chosen from <WGS84 Pts Job:>.
<Known Point:>	Choicelist	The point ID of the control point chosen from <Local Pts Job:>.
<Local Height:>	Use WGS84 Pt Ht or Use Local Pt Ht	The source of the height information to use in the transformation.

Next step

CONT (F1) continues to DET C SYS Step 4: Store Coord System.
The shifts in the X, Y and Z directions are displayed.

Next step

STORE (F1) stores the coordinate system to the DB-X, attaches the system to <WGS84 Pts Job:> that was selected in DET C SYS Determine Coord System Begin and returns to GPS1200 Main Menu.

5.4 Computing Required Azimuth

Description

Access step-bystep

Available for <Method: Two WGS84 Points> and <Method: User Entered> in DET C SYS Step 4: Determine Rotation.

Allows two local points to be chosen from <Local Pts Job:> selected in DET C SYS Determine Coord System Begin between which the required azimuth will be computed. This azimuth is then used with an azimuth between two WGS 1984 points chosen from <WGS84 Pts Job:> selected in DET C SYS Determine Coord System Begin, to calculate the rotation of the transformation.
The computed required azimuth appears in the <Reqd Azimuth:> field for <Method: Two WGS84 Points> and the Rotation: field for <Method: User Entered> in DET C SYS Step 4: Determine Rotation.

Step	Description
1.	Refer to "5.1 Accessing Determine Coordinate System - One Point Local- isation" to access DET C SYS Step 1: Choose Transform Type.
2.	Select <Transfrm Type: Onestep> or <Transfrm Type: Twostep>.
3.	Continue to DET C SYS Step 4: Determine Rotation.
4.	Select <Method: Two WGS84 Points> or <Method: User Entered>.
5.	INV (F2) to access DET C SYS Compute Required Azimuth.

Description of fields

Field	Option	Description
From:	Choicelist	The point ID of the first known point for the azimuth calculation.
To:	Choicelist	The point ID of the second known point for the azimuth calculation.

Next step

CONT (F1) calculates the required azimuth and returns to DET C SYS Step 4: Determine Rotation.

6.1 Overview

Reference line tasks

Point types

Terms

Defining a reference line/arc

Defining chainage

た్రొ

The Reference Line application program can be used for the following tasks:

- Measuring to a line/arc where the coordinates of a target point can be calculated from its position relative to the defined reference line/arc.
- Staking to a line/arc where the position of a target point is known and instructions to locate the point are given relative to the reference line/arc.
- Gridstaking a line/arc where a grid can be staked relative to a reference line/arc.

Measuring and staking out of points is possible for <R-Time Mode: Rover> and <RTime Mode: None>.

Heights and positions are always taken into account. Points must have full coordinate triplets.

Reference point:	The term reference point is used in this chapter to refer to the point from which the perpendicular offset from the reference line/arc, to the target point, is measured. Refer to paragraph " Defining a reference line/arc" and the diagrams for further explanation.
Target point: \quadThe design point.	
For measuring to a reference line, this is the point with the coor-	
dinates of the current position and the designed or calculated	
height.	
For staking or grid staking to a reference line, this is the point to	
be staked.	

A reference line can be defined in the following ways:

- Two known points
- One known point, an azimuth, a distance and a gradient
- One known point, an azimuth, a distance and a difference in height

A reference arc can be defined in the following ways:

- Two known points and a radius
- Three known points

The chainage of the start point of a reference line/arc can be defined.
Azimuth: is used throughout this chapter. This should always be considered to also mean Bearing:.

6.2 Configuring Reference Line

Access step-bystep

REFLINE
Configuration, General page

Step	Description
1.	Press PROG.
2.	Highlight Reference Line.
3.	CONT (F1)
4.	In REFLINE Reference Line/Arc Begin press CONF (F2) to access REFLINE Configuration.
5.	PAGE (F6) until the General page is active.

This screen consists of four pages. The fields available on the General page and the Checks page are very similar to those in STAKEOUT Configuration. Refer to "1.2 Configuration of a Logfile" for information on the fields on these pages. The explanations for the softkeys given below are valid as indicated.

CONT (F1)
To accept changes and return to the screen from where this screen was accessed.
DMASK (F3)
To edit the display mask currently being displayed. Available when <Display Mask:> is highlighted on General page.

SHIFT ABOUT (F5)

To display information about the application program name, the version number, the date of the version, the copyright and the article number.

Description of fields

Field	Option	Description
<Use Chain- ages:>	Yes or No	Activates the use of chainages within the refer- ence line application program.
<Chain Format:>	Choicelist	Available for <Use Chainages: Yes>. Selects display format for all chainage information fields.

[^2]
REFLINE

 Configuration, Heights pageDescription of fields
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Field } & \text { Option } & \text { Description } \\
\hline \text { <Heights:> } & & \begin{array}{l}\text { Depending on the task chosen this parameter } \\
\text { controls the following: } \\
\text { - } \\
\text { When measuring to a line/arc, it determines } \\
\text { the delta height value which is displayed } \\
\text { when points are being measured. } \\
\text { When staking to or gridstaking a line/arc, it } \\
\text { determines the height value to be staked } \\
\text { out. } \\
\text { Available unless <Orientate: To Line/Arc>. } \\
\text { Heights are computed along the reference }\end{array}
$$

line/arc.\end{array}\right\}\)| Use Ref Line |
| :--- |

Next step

IF	THEN
a logfile is to be configured	PAGE (F6) changes to the Logfile page. Refer to "1.2 Config- uration of a Logfile".
the configuration is finished	CONT (F1) to return to REFLINE Reference Line/Arc Begin Reference Line.

6.3 Managing Reference Lines/Arcs

6.3.1 Overview

Description

There are two ways by which a reference line/arc can be defined.

Manually Enter

- A reference line/arc can be defined by manually entering known parameters.
- The line is only temporary and is not stored once the Reference Line application program has been exited.

Select from Job

- Reference lines/arcs can be created, edited, stored and deleted in the <Control Job:>.
- The reference lines/arcs can be recalled for use later.

6.3.2 Manually Entering a Reference Line/Arc

Access step-bystep

Step	Description
1.	Refer to "1.1 Starting an Application Program" to access REFLINE Refer- ence Line/Arc Begin.
2.	CONT (F1) to access REFLINE Choose Task \& Reference Line.
3.	REFLINE Choose Task \& Reference Line, Reference page Select <Ref to Use: Manually Enter>.

REFLINE

Choose Task \&
Reference Line,
Reference page
The explanations for the softkeys given below are valid as indicated. The fields available depend on the options chosen for Task: and Method: on this screen.

CONT (F1)
To accept changes and continue with the subsequent screen.
SLOPE (F3)
To define reference line/arc slope.
OFSET (F4)
To define reference line/arc offsets, shifts, rotations, height offsets and DTM offsets.

SURVY (F5)

To manually occupy a point. Available when a point field is highlighted.
SHIFT CONF (F2)
To configure the reference line/arc.

Description of fields

Field	Option	Description
Task:	Choicelist	Defines the task to be performed.
Chainage:	User input	Available for <Use Chainages: Yes> in REFLINE Configuration, General page. Defines the chainage of the start point of the reference line/arc.
Method:	Choicelist	The method by which the reference line/arc will be defined. Depending on the chosen Task: various options are available.
<Start Point:>	Choicelist	The start point of the reference line/arc.
<Second Point:>	Choicelist	Available for <Method: 3 Points>. The second point of the reference arc.
<End Point:>	Choicelist	Available for <Method: 2 Points>, <Method: 3 Points> and <Method: 2 Points/Radius>. The end point of the reference line/arc.
<Line Length:>	Output	Available for <Ref to Use: Manually Enter> with <Method: 2 Points>.

Field	Option	Description The horizontal grid distance between <Start Point:> and <End Point:> of the line. ---- is displayed if the distance cannot be calcu- lated.
Azimuth:	User input	Available for <Method: Pt/Brg/Dst/Grade> and <Method: Pt/Brg/Dst/DHt>. The azimuth of the reference line.
<Horiz Dist:>	User input	Available for <Method: Pt/Brg/Dst/Grade> and <Method: Pt/Brg/Dst/DHt>. The horizontal grid distance from the start point to the end point of the reference line.
Grade:	User input	Available for <Method: Pt/Brg/Dst/Grade>. The gradient of the line from the start point to the end point of the reference line.
< Height:>	User input	Available for <Method: Pt/Brg/Dst/DHt>. The difference in height from the start point to the end point of the reference line.
Radius:	User input	Available for <Method: 2 Points/Radius>. The radius of the reference arc.
<Arc Dist:>	Output	The horizontal grid distance along the arc between <Start Point:> and <End Point:> of the arc. ---- is displayed if the distance cannot be calculated.

Next step

PAGE (F6) changes to REFLINE Choose Task \& Reference Line, Map page.

REFLINE
Choose Task \&

Reference Line,

 Map pageThe Map page provides an interactive display of the data.

Next step

IF	THEN
<Task: Measure to XX $>$	CONT (F1) accepts the changes and accesses REFLINE Measure Points. Refer to "6.4 Measuring to a Reference Line/Arc".
<Task: Stake to XX>	CONT (F1) accepts the changes and accesses REFLINE Enter Offset Values. Refer to "6.5 Staking to a Reference Line/Arc".
<Task: Gridstake XX>	CONT (F1) accepts the changes and accesses REFLINE Define Grid. Refer to "6.6 Gridstaking to a Reference Line/Arc".

6.3.3 Selecting a Reference Line/Arc from the Job

Access step-bystep

Step	Description
1.	Refer to "1.1 Starting an Application Program" to access REFLINE Refer- ence Line/Arc Begin.
2.	CONT (F1) to access REFLINE Choose Task \& Reference Line.
3.	REFLINE Choose Task \& Reference Line, Reference page Select <Ref to Use: Select from Job>.

REFLINE

Choose Task \&
Reference Line, Reference page

REFLINE

Choose Task \& Reference Line, Map page

The explanations for the softkeys and the fields are as for <Ref to Use: Manually Enter>. The Method: field is not available and all line definition fields are outputs, all other differences are described below. Refer to "6.3.2 Manually Entering a Reference Line/Arc" for information.
The fields shown depend on the options chosen for Task: and Method: in REFLINE New Reference XX.

Description of fields

Field	Option	Description
<Ref Line:>	Choicelist	Available for <Task: XX Line>. The reference line to be used.
<Ref Arc:>	Choicelist	Available for <Task: XX Arc>. The reference arc to be used.

Next step

PAGE (F6) changes to REFLINE Choose Task \& Reference Line, Map page.
The Map page provides an interactive display of the data. The reference line/arc can be viewed but not defined using this page.

Next step

IF	THEN
the desired refer- ence line/arc needs to be created, edited or selected	highlight <Ref Line:> or <Ref Arc:> and press ENTER to access RELINE Manage Reference XX. Refer to paragraph "REFLINE Manage Reference XX".
the desired refer- ence line/arc has been selected	For <Task: Measure to XX> CONT (F1) to access REFLINE Measure Points, Ref XX page. Refer to "6.4 Measuring to a Reference Line/Arc". (For <Task: Stake to XX>
	CONT (F1) to access REFLINE Enter Offset Values. Refer to "6.5 Staking to a Reference Line/Arc".

IF	THEN
	For <Task: Gridstake XX> CONT (F1) to access REFLINE Define Grid. Refer to "6.6 Gridstaking to a Reference Line/Arc".

REFLINE
Manage Reference
XX

CONT (F1)

To select the highlighted reference line/arc and to return to the screen from where this screen was accessed.
NEW (F2)
To create a reference line/arc.
EDIT (F3)
To edit a reference line/arc. DEL (F4)

To delete a reference line/arc.

Description of columns

Column	Description
Name	Names of all the reference lines/arcs available in the <Control Job:>.
Date	Date that the reference line/arc was created.

Next step

IF a reference line/arc	THEN
is to be selected	highlight the desired reference line/arc. CONT (F1) closes the screen and returns to REFLINE Choose Task \& Reference Line.
is to be created/edited	NEW (F2)/EDIT (F3) to access REFLINE New Reference XX/REFLINE Edit Reference XX. Refer to paragraph "REFLINE New Reference XX, Input page".
Editing a reference line/arc is similar to creating a new reference line/arc. For simplicity, only REFLINE New Reference XX is described below and the differences are clearly outlined.	

REFLINE
New Reference XX, Input page

REFLINE
New Reference XX, Map page

STORE (F1)

To store changes and return to REFLINE Manage Reference XX. SURVY (F5)

To manually occupy a point. Available when creating a new reference line/arc, when <Start Point:>, <Second Point> or <End Point:> is highlighted.

Description of fields

Field	Option	Description
<Ref ID:>	User input	The ID of the new reference line/arc.

The other fields available depend on the option chosen for Task: in REFLINE Choose Task \& Reference Line, Reference page and Method: on this screen. When editing a reference line/arc all line definition fields are outputs. Refer to "6.3.2 Manually Entering a Reference Line/Arc" for descriptions.

Next step

PAGE (F6) changes to REFLINE Choose Task \& Reference Line, Map page.
The Map page provides an interactive display of the data. When editing a reference line/arc this page is a Plot page and the reference line/arc can be viewed but not defined using this page.

Next step
STORE (F1) stores the changes and returns to REFLINE Manage Reference XX.

6.3.4 Defining Reference Line/Arc Offsets

Description
Access step-bystep

REFLINE
Define Offsets

A reference line can be offset, shifted and rotated, a reference arc can be offset.

Step	Description
1.	Refer to "6.3 Managing Reference Lines/Arcs" to access REFLINE Choose Task \& Reference Line.
2.	OFSET (F4) to access REFLINE Define Offsets.

This screen contains different fields depending on the options chosen for Heights: in REFLINE Configuration, Heights page, and Task: in REFLINE Choose Task \& Reference Line, Reference page.

CONT (F1)
To confirm the selections and to return to the previous screen.
CONT

Description of fields

Field	Option	Description
<Offset Line:> or <Offset Arc:>	User input	Distance to horizontally offset reference line/arc to the left or right. When an offset is applied to an arc the When radius of the arc changes.
<Shift Line:>	User input	Distance to horizontally shift reference line forward or back. Available for <Task: XX Line> unless <Heights: Use Ref Line> in REFLINE Configura- tion, Heights page.
<Height Offset:>	User input	The vertical offset of the reference line/arc. Available for <Heights: Use Start Point> and <Heights: Use Ref Line>.
<DTM Offset:>	User input	The vertical offset of the DTM model. Available for <Heights: Use DTM Model>.
<Rotate Line:>	User input	Angle by which to rotate the reference line. Available for <Task: XX Line> unless <Heights: Use Ref Line> in REFLINE Configuration, Heights page.

[^3]
6.3.5 Defining Reference Line/Arc Slope

Description

Access

step-by-step
It is possible to measure points and stake points on slopes related to a reference line/arc. A slope can be defined and cut/fill values can then be displayed to the slope when measuring along the reference line/arc. The slope is a plane from the reference line/arc and extends along the length of the reference line/arc.
Slopes can be used when measuring to a reference line/arc, staking a point relative to a reference line/arc or performing a grid stakeout relative to a reference line/arc.

Step	Description
1.	Refer to "6.3 Managing Reference Lines/Arcs" to access REFLINE Choose Task \& Reference Line.
2.	SLOPE (F3) to access REFLINE Define Slope.

REFLINE
Define Slope

Description of fields

Field	Option	Description
<Use Slope:>	Yes or No	<Use Slope:Yes> to define a slope.
<Slope Type:>	Choicelist	The method how the slope will be created.
	Right down	Left up Creates a downward plane extending to the left Creates a downward plane extending to the right of the defined reference line/arc. Creates a upward plane extending to the left of the defined reference line/arc. Creates a upward plane extending to the right of the defined reference line/arc.
<SIope Grade:>	User input	Inclination of the slope.
<Hinge Hz Ofst:>	User input	Horizontal offset from the line/arc that sets where the slope starts.
<Hinge V Ofst:>	User input	Vertical offset from the line/arc that sets where the slope starts.

Next step

CONT (F1) closes the screen and returns to REFLINE Choose Task \& Reference Line.

6.4 Measuring to a Reference Line/Arc

Access step-bystep

Step	Description
1.	Refer to "6.3 Managing Reference Lines/Arcs" to access REFLINE Choose Task \& Reference Line.
2.	REFLINE Choose Task \& Reference Line <Task: Measure to XX>
3.	CONT (F1) to access REFLINE Measure Points.

REFLINE
 Measure Points, Ref XX page

The fields available depend on the options chosen for Task: in REFLINE Choose Task \& Reference Line, Reference page and Heights: and <Edit Height:> in REFLINE Configuration, Heights page.

OCUPY (F1)
To start measuring the point. The position mode icon changes to the static icon. (F1) changes to STOP. The difference between the current position and the point being staked is still displayed.
STOP (F1)
To end measuring the point. The position mode icon changes to the moving icon. (F1) changes to STORE.
STORE (F1)
To store the measured point. (F1) changes to OCUPY.
LINE (F4)
To define/select a reference line/arc.
STAKE (F5)
To define reference line offsets to be staked out in relation to the reference line.
SHIFT CONF (F2)
To configure the reference line/arc.
Available for OCUPY (F1) being displayed.
SHIFT CONEC (F3) and SHIFT DISCO (F3)
To dial the number of the reference station configured in the active configuration set and to hang up immediately after the survey is completed. Available for OCUPY (F1) or STORE (F1) being displayed.

SHIFT INIT (F4)

To force a new initialisation. Available for OCUPY (F1) or STORE (F1) being displayed and for configuration sets allowing phase fixed solutions. SHIFT INDIV (F5) and SHIFT RUN (F5) To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.
SHIFT QUIT (F6)
To exit Reference Line application program.

Description of fields

Field	Option	Description
<Point ID:>	User input	The point ID of the point to be measured.
<Antenna Ht:>	User input	The height of the antenna that is being used. Changing the antenna height here does not update the default antenna height as defined in the active configuration set.
< Δ Offset:>	Output	Perpendicular offset from the reference line/arc measured from the reference point to the measured point.
<Chainage>	Output	Chainage of the current position along the line/arc. This is the chainage of the start of the reference line/arc plus < LLine:>/< Δ Arc:>.
<Design Slope:>	Output	Slope grade as defined by the user.
<Check Dist 1:>	Output	Horizontal distance from start point to measured point.
<Check Dist 2:>	Output	Horizontal distance from end point to measured point.
< 4 Line:>	Output	Horizontal distance along the reference line from the start point to the reference point.
< Line-End:>	Output	Horizontal distance along the reference line from the end point to the reference point.
<SD to Hinge:>	Output	Slope distance offset from line/arc to the measured point.
<SD to Line:>	Output	Slope distance offset from hinge to the measured point.
< Δ Arc:>	Output	Horizontal distance along the reference arc from the start point to the reference point.
< Δ Arc-End:>	Output	Horizontal distance along the reference arc from the reference point to the end point.

Field	Option	Description
< Δ Ht-Start:>	Output	Height difference between the start point and the measured point.
Height:	Output	Height of measured point.
< $\Delta \mathrm{Ht}$-Line:>	Output	Height difference between the reference point on the line and the measured point.
< Δ Perp Dist:>	Output	Slope distance between the reference point and the measured point, perpendicular to the reference line.
< Δ Spatial Dist:>	Output	Slope distance between the start point and the reference point.
< $\Delta \mathrm{Ht}$-Arc:>	Output	Height difference between the reference point on the arc and the measured point.
< Δ Ht-DTM:>	Output	Height difference between the measured point and the DTM.
<Design Ht:>	User input	Allows input of the design height of the target point.
< $\Delta \mathrm{Ht}$-Design:>	Output	Height difference between the <Design Ht:> and the height of the current position.
< Δ Ht-Hinge:>	Output	Height difference from the current position to the hinge.

Next step

PAGE (F6) changes to the Slope page.

REFLINE Measure Points, Slope page

OCUPY (F1)

To start measuring the point. The position mode icon changes to the static icon. (F1) changes to STOP. The difference between the current position and the point being staked is still displayed.
STOP (F1)
To end measuring the point. The position mode icon changes to the moving icon. (F1) changes to STORE.
STORE (F1)
To store the measured point. (F1) changes to OCUPY.
LINE (F4)
To define/select a reference line/arc. STAKE (F5)

To define reference line offsets to be staked out in relation to the reference line.

SHIFT CONF (F2)

To configure the reference line/arc. Available for OCUPY (F1) being displayed.
SHIFT CONEC (F3) and SHIFT DISCO (F3)
To dial the number of the reference station configured in the active configuration set and to hang up immediately after the survey is completed. Available for OCUPY (F1) or STORE (F1) being displayed.

SHIFT INIT (F4)

To force a new initialisation. Available for OCUPY (F1) or STORE (F1) being displayed and for configuration sets allowing phase fixed solutions.
SHIFT INDIV (F5) and SHIFT RUN (F5)
To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.
SHIFT QUIT (F6)
To exit Reference Line application program.

Description of fields

Field	Option	Description
<Point ID:>	User input	The point ID of the point to be measured.
<Current Slope:>	Output	The current slope of the position to the hinge.
< OOffset:>	Output	Perpendicular offset from the reference line/arc measured from the reference point to the meas- ured point.
< OOffset Hinge:>	Output	Perpendicular offset from the hinge to the meas- ured point.
< LLine:>	Output	Horizontal distance along the reference line from the start point to the reference point.
Cut: / Fill:	Output	Difference between the elevation of the actual position to the slope elevation at that position. Cut is above the slope, Fill is below the slope.
Height:	Output	Height of measured point.
<3D CQ:>	Output	The current 3D qualitity of the computed posi- tion.

Next step

PAGE (F6) changes to the Map page.

6.5 Staking to a Reference Line/Arc

Access step-bystep

Step	Description
1.	Refer to "6.3 Managing Reference Lines/Arcs" to access REFLINE Choose Task \& Reference Line.
2.	REFLINE Choose Task \& Reference Line, Reference page <Task: Stake to XX>
3.	CONT (F1) to access REFLINE Enter Offset Values.

REFLINE
Enter Offset Values
The screen contains different fields depending on the options chosen for Task: in REFLINE Choose Task \& Reference Line, Reference page and Heights: and <Edit Height:> in REFLINE Configuration, Heights page. The explanations for the softkeys given below are valid in all cases.

CONT (F1)
To confirm the selections and to continue with the subsequent screen.
LINE (F4)
To define/select a reference line/arc.
SURVY (F5)
To measure a point relative to the reference line/arc.
SHIFT CONF (F2)
To configure the reference line/arc. SHIFT INDIV (F5) and SHIFT RUN (F5)

To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.

Description of fields

Field	Option	Description
<Point ID:>	User input	The point ID of the target point to be staked.
<Stake Offset:>	User input	The offset from the reference point to the target point.
<Along Line:>	User input	Available for <Task: Stake to Line>. Horizontal distance from the start point to the reference point along the reference line.
<Along Arc:>	User input	Available for <Task: Stake to Arc>. Horizontal distance from the start point to the reference point along the reference arc.
Chainage:	User input	Chainage along the line/arc. This is the chainage of the start of the reference line/arc plus <Along Line:>/<Along Arc:>.

Field	Option	Description
<Height Offset:>	User input	Available for <Edit Height: No> unless <Heights: Use DTM Model> in REFLINE Configuration. The height offset of the target point is calculated as the height of the start/reference point plus <Height Offset:>.
<Design Ht:>	User input	Available for <Edit Height: Yes> in REFLINE Configuration, Heights page. The suggested height is the height of the start/reference point.

Next step

CONT (F1) accepts changes and continues to REFLINE XX Stakeout, Ref XX page.

REFLINE XX Stakeout, Ref XX page

This screen contains different fields depending on the options chosen for <Stake Mode:> in REFLINE Configuration, General page. The majority of the softkeys are identical to those available for measuring to a reference line/arc. Refer to "6.4 Measuring to a Reference Line/Arc" for information on the softkeys.

REVRS (F3)

To reverse the graphical display top to bottom.

SURVY (F5)

To measure a point relative to the reference line/arc.
SHIFT INDIV (F5) and SHIFT RUN (F5)
To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.

Description of fields

Field	Option	Description
First field on the screen	Choicelist	The point ID of the point to be staked.
hA:	User input	The default antenna height as defined in the active configuration set is suggested. Changing the antenna height here does not update the default antenna height as defined in the active configuration set.

Field	Option	Description
Ht:	Output	Available for <Edit Height: No> in REFLINE Configuration, Heights page. The orthometric height of the current position is displayed. If the orthometric height cannot be displayed, the local ellipsoidal height is displayed. If it is not possible to display the local ellipsoidal height, the WGS 1984 height is displayed.
<D Ht:>	User input	Available for <Edit Height: Yes> in REFLINE Configuration, Heights page. The design height, which is the orthometric height of the point to be staked, is displayed. If the orthometric height cannot be displayed, the local ellipsoidal height is displayed. If it is not possible to display the local ellipsoidal height, the WGS 1984 height is displayed. Changing the value for <D Ht:> changes the values displayed for <CUT: and FILL:.

Next step

PAGE (F6) changes to the Map page.

6.6 Gridstaking to a Reference Line/Arc

Access step-bystep

REFLINE
Define Grid

Step	Description
1.	Refer to "6.3 Managing Reference Lines/Arcs" to access REFLINE Define Grid.
2.	REFLINE Choose Task \& Reference Line, Reference page <Task: Gridstake XX>
3.	CONT (F1) to access REFLINE Define Grid.

The softkeys are identical to those available for staking to a reference line/arc. Refer to "6.5 Staking to a Reference Line/Arc" for information on the softkeys.

Description of fields

Field	Option	Description
<Begin Grid At:>	User input	Distance along the reference line/arc from the start point to the first target point to be staked.
Chainage:	User input	Chainage of the first target point to be staked along the line/arc. This is the chainage of the start of the reference line/arc plus <Begin Grid At:>.
<Increment By:>	User input	Spacing between points on the grid line.
<Line Offsets:>	User input	Spacing between grid lines.
<Next Line:>	Start at Begin	Each new grid line is started at the same end as where the previous grid line started. Each new grid line is started at the same end as where the previous grid line finished.
<Point ID:>	Grid ID	The point ID for grid points is shown as the posi- tion of the grid being staked. The point ID template as defined in the active configuration set is used for grid point ID's.

Next step

CONT (F1) accepts the changes and continues to REFLINE Stake +yyy.yy +xxx.xx.

REFLINE
Stake +yyy.yy
+xxx.xx, Ref XX page

The title of this screen indicates the position of the grid being staked where +yyy.yy is the station position along the grid line and +xxx.xx is the grid line offset.
The functionality of this screen is very similar to REFLINE XX Stakeout, Ref XX page. Differences between the two screens are outlined below. Refer to " 6.5 Staking to a Reference Line/Arc" for information on all other softkeys and fields.

SKIP (F4)
To skip the currently displayed station and increment to the next station. Available for OCUPY (F1) being displayed.
LINE (F5)
To start staking the next grid line. The position of the first point on the new line is determined by the option selected for <Next Line:>. Available for OCUPY (F1) being displayed.

Description of fields

Field	Option	Description
First field on the screen	User input	The point ID is based on the selection for <Point ID:> in REFLINE Define Grid. If a different point ID is typed in, the next point ID will still be shown as the next automatically computed point ID.
Ht:	Output	Available for <Edit Height: No> in REFLINE Configuration, Heights page. The orthometric height of the current position is displayed. If the orthometric height cannot be displayed, the local ellipsoidal height is displayed. If it is not possible to display the local ellipsoidal height, the WGS 1984 height is displayed.
<D Ht:>	User input	Available for <Edit Height: Yes> in REFLINE Configuration, Heights page. The design height, which is the orthometric height of the point to be staked, is displayed. If the orthometric height cannot be displayed, the local ellipsoidal height is displayed. If it is not possible to display the local ellipsoidal height, the WGS 1984 height is displayed. If a design height has been entered and SKIP (F4) or LINE (F5) is used the true grid height for the next point is shown as the suggested height.

[^4]
7 Reference Plane

7.1 Overview

Reference plane tasks

Defining a reference plane

Tilted plane
Any number of points define the plane. The axis of the tilted reference plane are:

7.2 Configuring Reference Plane

Access step-bystep

REFPLANE Configuration, Parameters page

CONT (F1)

To accept changes and return to the screen from where this screen was accessed.
DMASK (F3)
To edit the display mask currently being displayed. Available when <Display Mask:> is highlighted on Parameters page.
SHIFT ABOUT (F5)
To display information about the application program name, the version number, the date of the version, the copyright and the article number.

Description of fields

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Field } & \text { Option } & \text { Description } \\
\hline \begin{array}{l}\text { <Display } \\
\text { Mask:> }\end{array} & \text { Choicelist } & \begin{array}{l}\text { The user defined display mask is shown in } \\
\text { REFPLANE Measure Points on Plane. }\end{array} \\
\hline \begin{array}{l}\text { <Max } \pm \Delta \text { d for } \\
\text { Plane Def.:> }\end{array} & \text { User input } & \begin{array}{l}\text { The maximum perpendicular deviation of a point } \\
\text { from the calculated plane. }\end{array} \\
\hline \text { <Display:> } & & \begin{array}{l}\text { This parameter defines the points displayed in } \\
\text { the Plot and Map pages of the Reference Plane } \\
\text { application program in the plan view. }\end{array}
$$

All Points

Displays all points.

Displays points within the defined <Slice\end{array}\right\}\)| <Slice |
| :--- |
| Width:> |\quad User input $\left.\quad$| Available for <Display: Points in Slice>. This |
| :--- |
| distance is applied to both sides of the plane. If |
| lines and areas are to be displayed in a partic- |
| ular Map page, then parts of lines and areas |
| falling within the defined slice are also |
| displayed. | \right\rvert\,

Next step

PAGE (F6) changes to the Logfile page. Refer to "1.2 Configuration of a Logfile".

7.3 Managing Reference Planes

Description

Access

REFPLANE

Choose Task \& Reference Plane

A reference plane is used to measure points relative to the plane.

Measure to plane

- Reference planes can be created, edited, stored and deleted in the active job.
- The reference planes can be recalled for later use.
- The plane can be shifted through a point or a defined offset.

Step	Description
1.	Refer to "1.1 Starting an Application Program" to access REFPLANE Reference Plane Begin.
2.	CONT (F1) to access REFPLANE Choose Task \& Reference Plane.

Description of fields

Field	Option	Description
Task:	Measure to Plane	The coordinates of measured points are calculated relative to the reference plane.
<Plane to Use:>	Create New Plane Select From Job	Defines a new reference plane. Reference plane is selected in <Ref Plane:>
<Ref Plane:>	Choicelist	Available for <Plane to Use: Select From Job>. The reference plane to be used.
<No. of Points:>	Output	Available for <Plane to Use: Select From Job>. Number of points used for plane definition for the plane shown in the <Ref Plane:>.
<Std Deviation:>	Output	Standard deviation of used points for plane definition. ----- is displayed for less than four points.
<Max Δ d:>	Output	Maximum distance between a point and the calculated plane. ----- is displayed for less than four points.
Offset:	Output	The offset method used as defined in REFPLANE XX Reference Plane, Offset page.
Origin:	Output	The origin method used as defined in REFPLANE XX Reference Plane, Origin page.

Next step

IF	THEN
a new plane is to be created	CONT (F1) accesses REFPLANE New Reference Plane, General page. Refer to paragraph " REFPLANE New Refer- ence Plane, General page".

REFPLANE

New Reference Plane, General page

REFPLANE
New Reference
Plane, Points page

IF	THEN
a plane is to be edited	<Plane to Use: Select From Job>. Highlight <Ref Plane:>. ENTER to access REFPLANE Manage Reference Planes. EDIT (F3) to access REFPLANE Edit Reference Plane, General page. Refer to "REFPLANE New Reference Plane, General page". Editing a reference plane is similar to creating a new reference plane. For simplicity, only REFPLANE New Reference Plane is explained.
points are to be measured to a plane	CONT (F1) accessses REFPLANE Measure Points on Plane, Reference page. Refer to "7.4 Measuring Points to a Reference Plane".

Description of fields

Field	Option	Description
<Ref Plane:>	User input	The ID of the new reference plane.
<No. of Points:>	Output	Number of points used for plane definition.
<Std Devia- tion:>	Output	Standard deviation of used points for plane defi- nition. ---- is displayed unless more than four points are used to define the plane.
<Max Δ d:>	Output	Maximum distance between measured point and defined plane. ----- is displayed unless more than four points are used to define the plane.

Next step

PAGE (F6) changes to REFPLANE New Reference Plane, Points page.

STORE (F1)

To compute and store the reference plane.
ADD (F2)
To add points from REFPLANE
Data: Job Name to define the reference plane.
USE (F3)
To change between Yes and No for the highlighted point.
DEL (F4)
To remove the highlighted point from the list.

SURVY (F5)

To measure a point to be used for the plane.
SHIFT ORIGN (F4)
To use the highlighted point as the origin of the plane.

Description of columns

Column	Description
$\boldsymbol{\Delta d}(\mathbf{m})$	Displays the perpendicular distance of the point from the definition of the plane.
*	Shown to the right of the point for a point which will be used as origin of the plane.
\boldsymbol{m}	Shown to the left of the point if the point is outside maximum distance between a point and the calculated plane as defined in REFPLANE Configuration, Parameters page.

Next step

PAGE (F6) changes to REFPLANE New Reference Plane, Origin page.

REFPLANE New Reference Plane, Origin page
New Reference Plane

Fifneral |Pnints] Origin Offset |Plnt|
Use As Origin: Plane Coords 1
Enter local coordinates of
origin point (point with *)
X-coord : 1000.0000 m
Z-coord : 1000.0000 m
Pt Defining Direction of Y -Axis
Point : pt 69 性
STORE $\square \square \square$ DIREC|PAGE

STORE (F1)
To compute and store the reference plane.

DIREC (F5)

Available for Point: being hightlighted. To access REFPLANE Survey: XX. Measure a point to define the positive plane direction.

Description of fields

Field	Option	Description
<Use As Origin:>	Plane Coords	Point results are additionally stored with X, Y, Z coordinates based on the local plane coordinate system.
X-coord: or <Z- coord:>	User input	Points on the plane are transformed into the national coordinate system.
CPoint:>	Chaicelist	Available for <Use As Origin: Plane Coords>. Enter local X or Z coordinate of origin. The origin is defined as the projection of the measured point onto the calculated plane.

[^5]REFPLANE
New Reference Plane, Offset page

REFPLANE
New Reference
Plane, Plot page

STORE (F1)
To compute and store the reference plane.

OFSET (F5)

Available for <Offset PtID:> being highlighted. Measure a point to define the offset point.

Description of fields

Field	Option	Description
<Define Offset:>	Choicelist	An offset can be defined by a point or a distance. The defined plane is shifted along the Y axis by the offset.
<Offset PtID:>	Choicelist	Available for <Define Offset: By Point ID>. Point ID of offset point.
Offset:	User input or output	Distance by which to offset the plane along the Y axis.

Next step

PAGE (F6) changes to REFPLANE New Reference Plane, Plot page.
Points displayed depend on the settings in REFPLANE Configuration, Parameters page. Points defining the plane are displayed in black, the other points are displayed in grey.

Softkey	Description
SHIFT FACE (F1)	To access the face view of the plane.
SHIFT PLAN (F1)	To access the plan view of the plane.

Next step

STORE (F1) to compute and store the reference plane.

7.4 Measuring Points to a Reference Plane

Step	Description
1.	Refer to "1.1 Starting an Application Program" to access REFPLANE Reference Plane Begin.
2.	CONT (F1) to access REFPLANE Choose Task \& Reference Plane.
3.	REFPLANE Choose Task \& Reference Plane Select a reference plane.
4.	CONT (F1) to access REFPLANE Measure Points to Plane, Reference page.

REFPLANE
Measure Points to Plane, Reference page

OCUPY (F1)
To start logging of static observations. The position mode icon changes to the static icon. (F1) changes to STOP.
STOP (F1)
To end logging of static observations when enough data is collected. (F1) changes to STOP.

STORE (F1)

To store the measured point. (F1) changes to OCUPY.
CMPR (F4)
To calculate offsets to previously measured points.
PLANE (F5)
To edit the selected reference plane.
SHIFT INDIV (F5) and SHIFT RUN (F5)
To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.

Description of fields

Field	Option	Description
<Offset Δ Per d:>	Output	The perpendicular distance between current position and adjusted plane.
<Offset Δ Ht:>	Output	The vertical distance between current position and adjusted plane.

Next step

PAGE (F6) changes to REFPLANE Measure Points to Plane, Map page.

REFPLANE
 Measure Points to Plane, Map page

Softkey	Description
SHIFT FACE (F1)	To access the face view of the plane.
SHIFT PLAN (F1)	To access the plan view of the plane.

Next step

PAGE (F6) changes to another page on this screen.

8.1 Overview

Description

Stakeout modes

Coordinate system

Height source

The Stakeout application program is used to place marks in the field at predetermined points. These predetermined points are the points to be staked. The points to be staked may

- have been uploaded to a job on the receiver using LGO.
- already exist in a job on the receiver.
- have been uploaded from an ASCII file to a job on the receiver using Main Menu: Convert...IImport ASCII/GSI Data to Job.

A staked point can be manually occupied as a check.
Points can be staked using different modes:

- Polar mode.
- Orthogonal mode.

Staking out is possible for <R-Time Mode: Rover> and <R-Time Mode: None>.
Points cannot be staked if the active coordinate system is different to that in which the points to be staked are stored. For example, the points to be staked are stored with local coordinates and the active coordinate system is WGS 1984.

Heights can be taken into account from

- the vertical component of a coordi- • a Digital Terrain Model. nate triplet.

8.2 Configuring Stakeout

Access

STAKEOUT
Configuration, General page

Step	Description
1.	Press PROG.
2.	Highlight Stakeout.
3.	CONT (F1)
4.	In STAKEOUT Stakeout Begin press CONF (F2) to access STAKEOUT Configuration.

The explanations for the softkeys given below are valid for all pages, unless otherwise stated.

CONT (F1)

To accept changes and return to the screen from where this screen was accessed.
DMASK (F3)
Available for <Display Mask:> being highlighted on General page. To edit the display mask currently being displayed in this field.
SHIFT ABOUT (F5)
To display information about the program name, the version number, the date of the version, the copyright and the article number.

Description of fields

Field	Option	Description
Orientate:	To North	The reference direction to be used to stakeout points. The North direction shown in the graphic based on the active coordinate system. The position of the sun calculated from the current position, the time and the date.
	To Sun	To Last Point
To Point(Stake)	Timewise the last recorded point. A point from <Stakeout Job:> selected in STAKEOUT Stakeout Begin. A point from Job: selected in STAKEOUT Stakeout Begin.	

Field	Option	Description
	To Line(Stake) To Line(Store) To Arrow	The direction of the orientation is parallel to a reference line from <Stakeout Job:> selected in STAKEOUT Stakeout Begin. Open the listbox to create, edit or delete a reference line. The direction of the orientation is parallel to a reference line from Job: selected in STAKEOUT Stakeout Begin. Open the listbox to create, edit or delete a reference line. The direction of the orientation is from the current position to the point to be staked. The graphical display shows an arrow pointing in the direction of the point to be staked.
To:	Choicelist	Available for <Orientate: To Point(Stake)>, <Orientate: To Point(Store)>, <Orientate: To Line(Stake)> and <Orientate: To Line(Store)>.To select the point or line to be used for orientation.
<Stake Mode:>	Polar Orthogonal	The method of staking out. The direction from the orientation reference, the horizontal distance and the cut/fill is displayed. The distance forwards to/backwards from the point, the distance right/left to the point and the cut/fill is displayed.
<Display Mask:>	Choicelist	The user defined display mask to be shown in STAKEOUT XX Stakeout.
<Closest Point:>	Yes No	The order of the points suggested for staking out. After staking and storing a point, the next point suggested for staking out is the point closest to the point which was staked. After staking and storing one point, the next point suggested for staking out is the subsequent one in <Stakeout Job:>.
$\begin{aligned} & \text { <Store Pt } \\ & \text { ID:> } \end{aligned}$	Same as Stake Pt Prefix Suffix	The staked points are stored with the same point ID's as the points to be staked. Adds the setting for <Prefix/Suffix:> in front of the original point ID's. Adds the setting for <Prefix/Suffix:> at the end of the original point ID's.
<Prefix/Suffi x:>	User input	Available for <Store Pt ID: Prefix> and <Store Pt ID: Suffix>. The identifier with up to four characters is added in front of or at the end of the ID of the staked point.

Next step PAGE (F6) changes to the Checks page.			
Description of fields STAKEOUT Configuration, Checks page	Field Option Description <Pos Check:> Yes or No Allows a check to be made on the horizontal coordinate difference between the staked point and the point to be staked. <Pos Limit:> User input Available for <Pos Check: Yes>. Sets the maximum horizontal coordinate difference accepted in the position check. <Height Check:>	Yes or No	Allows a check to be made on the vertical differ- ence between the staked point and the point to be staked.
	<Height Limit:>	User input	Available for <Height Check: Yes>. Sets the maximum vertical difference accepted in the height check.
	<Beep near Pt:>	Yes or No	The receiver beeps when the horizontal radial distance from the current position to the point to be staked is equal to or less than defined in <Dist from Pt:>.
	<Dist from Pt:>	User input	Available for <Beep near Pt: Yes>. The hori- zontal radial distance from the current position to the point to be staked when a beep should be heard.

Next step

PAGE (F6) changes to the Heights page.
STAKEOUT
Configuration, Heights page

Field	Option	Description
<Height Offset:>	User input	Allows a constant height offset to be applied to the height of the points or DTM being staked.
<Edit Height:>	Yes	The height of the point to be staked is displayed while staking out. The value can be changed. The height of the current position is displayed while staking out. The value cannot be changed.
<Use DTM:>	No	Available if DTM Stakeout has been activated via a licence key. No DTM file is used. The positions and heights of points in the selected <Stakeout Job:> are staked out.

Field	Option	Description
DTM only	Activates the stakeout of heights without posi- tions. Heights relative to the selected <DTM Job:> are staked out. No actual points are staked out.	
	DTM \& Stake Job	The positions of points in the selected <Stakeout Job:> are staked out. Heights to be staked out are taken from <DTM Job:>.

Next step

IF	THEN
a logfile is to be configured	PAGE (F6) changes to the Logfile page. Refer to "1.2 Config- uration of a Logfile".
the configuration is finished	CONT (F1) to return to STAKEOUT Stakeout Begin followed by CONT (F1) to access STAKEOUT XX Stakeout.

8.3 Staking Out

Diagrams The diagrams show examples for staking out with <Orientate: To North>.

Orthogonal mode

P0 Current position
P1 Point to be staked
d1 FORW: or BACK:
d2 RGHT: or LEFT:
d3 FILL: or CUT:

Polar mode

P0 Current position
P1 Point to be staked
d1 DIST:
d2 CUT: or FILL:
a DIRC:

Access

STAKEOUT XX Stakeout, Stake page

Refer to "8.2 Configuring Stakeout" to access STAKEOUT XX Stakeout.
The pages shown are those from a typical configuration set. An additional page is available when a user defined display mask is used.

OCUPY (F1)

To start measuring the point being staked. (F1) changes to STOP. The difference between the current position and the point being staked is still displayed.

STOP (F1)

To end measuring the point being staked. (F1) changes to STORE.
After ending the measurements, the differences between the measured point and the point to be staked are displayed.
STORE (F1)
To store the measured point. (F1) changes to OCUPY.

NEAR (F2)

To search <Stakeout Job:> for the point nearest to the current position when the key is pressed. The point is selected as the point to be staked and is displayed in the first field on the screen. Available when OCUPY $(F 1)$ is displayed.

REVRS (F3)

To reverse the graphic top to bottom.

SURVY (F5)

To survey additional points which may be needed during staking out. To return to Stakeout application program, press SHIFT QUIT (F6) or ESC. Available for OCUPY (F1) being displayed.
SHIFT CONF (F2)
To configure the Stakeout application program. Available for OCUPY (F1) being displayed.
SHIFT CONEC (F3) and SHIFT DISCO (F3)
To dial the number of the reference station configured in the active configuration set and to hang up immediately after the survey is completed. Available for OCUPY (F1) or STORE (F1) being displayed and for real-time devices of type digital cellular phone or modem.
SHIFT INIT (F4)
To force a new initialisation. Available for OCUPY (F1) or STORE (F1) being displayed and for configuration sets allowing phase fixed solutions.

Description of fields

Field	Option	Description
First field on the screen	Choicelist	The point ID of the point to be staked.
hA:	User input	The default antenna height as defined in the active configuration set is suggested. Changing the antenna height here does not update the default antenna height as defined in the active configuration set.
Ht:	Output	Available for <Edit Height: No> in STAKEOUT Configuration, Heights page.

Field	Option	Description The orthometric height of the current position is displayed. If the orthometric height cannot be displayed, the local ellipsoidal height is displayed. If it is not possible to display the local ellipsoidal height, the WGS 1984 height is displayed.
<D Ht:>	User input	Available for <Edit Height: Yes> in STAKEOUT Configuration, Heights page. The design height, which is the orthometric height of the point to be staked, is displayed. If the orthometric height cannot be displayed, the local ellipsoidal height is displayed. If it is not possible to display the local ellipsoidal height, the WGS 1984 height is displayed. The value for <Height Offset:> configured in STAKEOUT Configuration, Heights page is not taken into account.

Next step

PAGE (F6) changes to the Map page.

8.4 Stakeout Difference Limit Exceeded

Description

Access

STAKEOUT
Difference Limit Exceeded

If configured a check is made on the horizontal and/or vertical coordinate distance from the staked point to the point to be staked.

The screen shown below is accessed automatically when the point is stored if either of the configured difference limits are exceeded.

The availability of the fields depends on the configured <Stake Mode:> and <Use DTM:>. For example for <Use DTM: DTM only>, position relevant fields are unavailable.

The limits that have been exceeded are shown in bold and are indicated by a ? .

BACK (F1)
To return to STAKEOUT XX
Stakeout without storing the point.
Staking out of the same point continues.
STORE (F3)
To accept the coordinate differences, store the point information and return to STAKEOUT XX Stakeout. SKIP (F4)

To return to STAKEOUT XX
Stakeout without storing the point.
According to filter and sort settings the subsequent point in <Stakeout Job:> is suggested for staking out.

Description of fields

Field	Option	Description
<Point ID:>	Output	The point ID of the point to be staked.
<Store ID:>	User input	The unique number which is used to store the staked point. Allows a different point ID to be typed in if needed.
< BEARING:>	Output	The bearing from the staked point to the point to be staked.
< DISTANCE:>	Output	Horizontal distance from the staked point to the point to be staked.
<2D-Diff:>	Output	Displays the horizontal difference from the staked point to the point to be staked.
<3D-Diff:>	Output	Displays the spatial difference from the staked point to the point to be staked.

9.1 Pre-Survey Preparations

Pre-survey preparations step-bystep

Step	Description
1.	Decide on the GNSS surveying technique.
2.	For static operations, prepare an observation schedule.
3.	Organise the communication between the survey parties.
4.	Decide on the equipment setup - suiting the local conditions. - depending on the available equipment.
5.	Get the required equipment together.
6.	For real-time reference and rover operations: - If radios are used as real-time device, all radios must be configured for the same frequency range. The radio on the reference must be configured to transmit data. The radio on the rover must be configured to receive data. - If digital cellular phones are used as real-time device, all digital cellular phones must either be registered or equipped with a SIM card. Data transfer must be supported.
7.	Fully charge all batteries.
8.	Check that there is enough spare memory available on the CompactFlash card or the internal memory, if fitted.
9.	On the receiver, select an job. OR Create a new job.
10.	On the receiver, select a typical configuration set for the GNSS surveying technique. OR Create a new configuration set for the GNSS surveying technique.
F	For static operations, coordinates of the points used as reference station might be needed for post-processing.
な	For static, post-processed kinematic and real-time rover operations, data from the closest reference station might be required for post-processing. Run one receiver as static operation or real-time reference at the same time. OR Get data from the closest reference station for the same time interval.

Step	Description
11.	For real-time reference operations: Are coordinates of the point used as reference station known? - If yes, create a new point with these coordinates on the receiver. - \quad If no, the coordinates can be determined in the field.

9.2 Static Operations

Requirements
Access step-bystep

<R-Time Mode: None> in CONFIGURE Real-Time Mode.

Step	Description
1.	Refer to "1.1 Starting an Application Program" to access SURVEY Survey Begin.
2.	SURVEY Survey Begin Check the settings. Select a typical configuration set for static operations.
3.	CONT (F1) to access SURVEY Survey: Job Name.

The fields shown are those from a typical configuration set for static operations. The screen described consists of the Survey page and the Map page. The explanations for the softkeys given below are valid for the Survey page.

Antenna Ht :
1.382 m

OCUPY (F1)

To start logging of static observations. The position mode icon changes to the static icon. (F1) changes to STOP.
STOP (F1)
To end logging of static observations when enough data is collected. (F1) changes to STORE.
STORE (F1)
To store the measured point. (F1) changes to OCUPY.
H PNT (F5)
To measure a hidden point.
SHIFT CONF (F2)
To configure auto points and hidden point measurements.
SHIFT INDIV (F5) and SHIFT RUN (F5)
To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.

Description of fields

Field	Option	Description
<Point ID:>	User input	The identifier for manually occupied points. The configured point ID template is used. The ID can be changed in the following ways: -To start a new sequence of point ID's type over the point ID.

Field	Option	Description - For an individual point ID independent of the ID template SHIFT INDIV (F5). SHIFT RUN (F5) changes back to the next free ID from the configured ID template.
<Antenna Ht:>	User input	The default antenna height as defined in the active configuration set is suggested. Changing the antenna height here does not update the default antenna height as defined in the active configuration set.
<3D CQ:>	Output	The current 3D coordinate quality of the computed position.

Next step

PAGE (F6) changes to another page on this screen.

Observation times

Observation times depend on

- Baseline length
- Number of satellites
- Satellite geometry, GDOP
- lonosphere. Refer to "Ionospheric disturbance".

Observation times for dual frequency receivers

The following table is an approximate guide as it is impossible to quote observation times that can be fully guaranteed. The quoted observation times are based on tests in mid-latitudes under normal ionospheric disturbance with a dual frequency receiver.

Observation method	Minimum number of satel- lites, GDOP < 8	Baseline length [km]	Approximate observa- tion time [min]
Static	4	$15-30$	$10-15$
	4	>30	$30-60$

Observation times for single frequency receivers

Providing recommendations for required observation times is more difficult for single frequency receivers than for dual frequency receivers. The following table is an approximate guide since it is impossible to quote observation times that can be fully guaranteed. A minimum of five satellites above 15° and a GDOP < 8 must be available.
As a rule of thumb the baseline observation time should be 5 min per km of the baseline length with a minimum time of 15 min .

Baseline length $[\mathbf{k m}]$	1	2	3	4	5	6	7	8	9	10	>10

Approximate observation time [min]	15	15	15	20	25	30	35	40	45	50	>60

lonospheric disturbance

Ionospheric disturbance varies with

- day/night. At night, it is much lower than during the day.
- month/year.
- position on earth's surface. The influence is usually less in mid latitudes than in polar and equatorial regions.
Signals from low elevation satellites are more affected by atmospheric disturbance than those from high satellites.

9.3 Post-Processed Kinematic Operations

Requirements Access step-bystep	- <R-Time Mode: None> in CONFIGURE Real-Time Mode. - <Log Raw Obs: Static \& Moving> in CONFIGURE Logging of Raw Obs.	
	Step	Description
	1.	Refer to "1.1 Starting an Application Program" to access SURVEY Survey Begin.
	2.	SURVEY Survey Begin Check the settings. Select a typical configuration set for post-processed kinematic operations.
	3.	CONT (F1) to access SURVEY Survey: Job Name.
SURVEY	Refer to "9.2 Static Operations" for information on the softkeys.	
Survey: Job Name,		
Survey page	Next step	
	PAGE (F6) changes to another page on this screen.	

9.4 Real-Time Reference Operations

Requirements

Access step-bystep

SURVEY

Set Up Reference Station

- <R-Time Mode: Reference> in CONFIGURE Real-Time Mode
- A real-time interface is configured correctly.
- The real-time device is attached to the receiver and working properly.

Step	Description
1.	Refer to "1.1 Starting an Application Program" to access SURVEY Survey Begin.
2.	SURVEY Survey Begin Check the settings. Select a typical configuration set for real-time refer- ence operations.
3.	CONT (F1) to access SURVEY Set Up Reference Station.

The settings on this screen set the reference station and its coordinates.

CONT (F1)
To accept changes and access the subsequent screen.
COORD (F2)
To view other coordinate types. Local coordinates are available if a local coordinate system is active.
LAST (F3)
To use the same coordinates as when the receiver was last used as reference station. Available if the receiver has previously been used as reference station and if no point in the active job has the same point ID as the one last used as reference station.
HERE (F4)
To use the coordinates of the current navigation position as reference station coordinates.
SHIFT ELL H (F2) and SHIFT ORTH (F2)
Available for local coordinates. To change between the ellipsoidal and the orthometric height.

Next step

Step	Description
1.	Type in the reference station coordinates.
2.	CONT (F1) to access SURVEY Survey: Job Name.
	The point occupation starts.

SURVEY

Survey: Job Name
The appearance and functionality of the screen is identical for all real-time reference configuration sets.

STOP (F1)

To end the point occupation, store the point and to return to GPS1200 Main Menu.

Description of fields

Field	Option	Description
<Point ID:>	Output	The identifier for the reference station point.
<Antenna Ht:>	Output	The antenna height as entered in SURVEY Set Up Reference Station is displayed.
<Time at Point:>	Output	The time from when the point is occupied until point occupation is stopped.
GDOP:	Output	The current GDOP of the computed position.

Next step

STOP (F1) to end the point occupation, store the point and to return to GPS1200 Main Menu.

9.5 Real-Time Rover Operations

Requirements

Access step-bystep

SURVEY

Survey: Job Name, Survey page

- <R-Time Mode: Rover> in CONFIGURE Real-Time Mode
- A real-time interface is configured correctly.
- The according real-time device is attached and working properly.

$\left.$| Step | Description |
| :---: | :--- |
| 1. | Refer to "1.1 Starting an Application Program" to access SURVEY Survey
 Begin. |
| 2. | SURVEY Survey Begin
 Check the settings. Select a typical configuration set for real-time rover
 operations. |
| 3. | CONT (F1) to access SURVEY Survey: Job Name. |
| The arrow at the real-time device and real-time status icon flashes when | |
| real-time messages are being received. | | | Fixing ambiguity begins. The current position status is indicated by the |
| :--- |
| position status icon. When working with code only corrections, an ambi- |
| guity solution is not attempted. | \right\rvert\, | The position mode icon is the moving icon. This indicates that the antenna |
| :--- |
| can be moved around and that no static observations are being recorded. |

The fields shown are those from a typical configuration set for real-time rover operations. The screen described consists of the Survey page and the Map page. The explanations for the softkeys given below are valid for the Survey page. The majority of softkeys is identical to those available for static operations. Refer to "9.2 Static Operations" for information on the identical softkeys.

Antenna Ht : 2.0000 m

SHIFT CONEC (F3) and SHIFT DISCO

 (F3)To dial the number of the reference station configured in the active configuration set and to hang up immediately after the survey is completed. Available for real-time devices of type digital cellular phone or modem. Available for <Auto CONEC: No> in CONFIGURE GSM Connection.

SHIFT AVGE (F2)

To check the residuals for the averaged position. Available for <Averaging Mode: Average> and for more than one measured coordinate triplet recorded for the same point.

SHIFT ABS (F2)

To check the absolute difference between the measurements. Available for <Averaging Mode: Absolute Diffs> and for more than one measured coordinate triplet recorded for the same point.

SHIFT INIT (F4)

Available for configuration sets allowing phase fixed solutions. To force a new initialisation.

Description of fields

Field	Option	Description
<Point ID:>	User input	The identifier for manually occupied points. The configured point ID template is used. The ID can be changed in the following ways: - To start a new sequence of point ID's type over the point ID. For an individual point ID independent of the ID template SHIFT INDIV (F5). SHIFT RUN (F5) changes back to the next free ID from the configured ID template.
<Antenna Ht:>	User input	The default antenna height as defined in the active configuration set is suggested. Changing the antenna height here does not update the default antenna height as defined in the active configuration set.
<3D CQ:>	Output	The current 3D coordinate quality of the computed position.

Next step

PAGE (F6) changes to another page on this screen.

10 Survey - Auto Points

10.1 Overview

Description

Auto points is used to automatically log points at a specific rate. Additionally, individual auto points can be stored outside the defined rate. Auto points are used in real-time or post-processed moving applications to document the track which was walked or driven along. Auto points are logged between starting and stopping logging of auto points form one chain. A new chain is formed each time logging of auto points is started.
Auto points can be collected in the Survey application program. An Auto page is visible when logging of auto points is active.
Up to two offset points related to one auto point can be logged. The offset points can be both to the left or right and they can be coded independently of each other and of the auto points.

Logging of auto points is possible for <R-Time Mode: Rover> and <R-Time Mode: None>.

10.2 Configuring Auto Points

Access

SURVEY

Configuration,
Auto Points page

Step	Description
1.	Select Main Menu: Survey.
2.	In SURVEY Survey Begin press CONF (F2) to access SURVEY Config- uration.

CONT (F1)
To accept changes and return to the screen from where this screen was accessed.
DMASK (F3)
Available for <Log Auto Pts: Yes>. To configure what is viewed in the Auto page in the Survey application program.

Description of fields

Field	Option	Description
<Log Auto	Yes or No	Activates or deactivates the logging of auto points and all fields on this screen.
<Log By:>	Time	Auto points are logged according to a time interval. The time interval is independent from the update interval for the position on the screen. The difference in distance from the last stored auto point, which must be reached before the next auto point is logged. The auto point is logged with the next available computed posi- tion. The height difference from the last stored auto point, which must be reached before the next auto point is logged. The auto point is logged with the next available computed position. Before the next auto point is logged, either the difference in distance or the minimal difference in height must be reached. The auto point is logged with the next available computed posi- tion. An auto point is stored when the position of the antenna does not move more than the distance configured in <Stop Position:> within the <Stop Time:>.
Dist or Ht	Height Diff	Stop \& Go

Field	Option	Description
	User Decides	An auto point is stored upon pressing OCUPY (F3) in SURVEY Survey: Job Name, Auto page. In the beginning, the chain to which the auto points should be assigned must be started with START (F1). In the end, the chain must be closed with STOP (F1).
<Log Every:>	User input For <Log By: Time> from 0.05 s to 60.0 s	Available unless <Log By: Dist or Ht>. For <Log By: Distance> and <Log By: Height Diff>. The difference in distance or height before the next auto point is logged. For <Log By: Time>. The time interval before the next auto point is logged.
<Min Distance:>	User input	Available for <Log By: Dist or Ht>. The value for the difference in distance before the next auto point is logged.
<Min Height:>	User input	Available for <Log By: Dist or Ht>. The value for the height difference before the next auto point is logged.
<Stop Position:>	User input	Available for <Log By: Stop \& Go>. The maximum distance within which the position is considered stationary.
<Stop Time:>	User input	Available for <Log By: Stop \& Go>. The time while the position must be stationary until an auto point is stored.
Store:	File (Pts Only) DBX(Pnts \& Codes)	Changing this setting while auto points are being logged stops the logging. It must then be restarted. Logs auto point to the measurement database. Point logging at up to 20 Hz . Coding and logging of offset points is not possible. Logs auto points to the DB-X. Point logging at up to 1 Hz . Coding and logging of offset points is possible.
<Start Logging:>	Immediately Controlled	Logging of auto points starts immediately when the SURVEY screen is accessed. Logging of auto points starts upon pressing START (F1) on the Auto page in SURVEY.
<Monitor CQ:>	Yes or No	Activates monitoring of the coordinate quality. Auto points are stored when the coordinate quality is within the defined limit.

Field	Option	Description
<3D CQ Limit:>	User input	Available for <Monitor CQ: Yes>. Limit for the coordinate quality above which an auto point is no longer automatically stored. When the CQ of the auto point falls again below the defined value then the storing of auto points begins again.
<Beep When:>	Logging	Instrument beeps when storing an auto point.
Not Logging	Available for <Monitor CQ: Yes>. Instrument gives a single alarm beep each time an auto point is not recorded because the limit for the coordinate quality is exceeded. For <Log By: Time> the beep is given at the time when the point should have been recorded. Unless <Log By: Time>, the beep is given at 1 Hz once the auto logging has stopped due to the exceeded coordinate quality. Instrument never beeps.	

Next step

DMASK (F3) to configure a display mask.

SURVEY
Configure Auto Pts
Display Mask

CONT (F1)

To accept changes and return to the screen from where this screen was accessed.
CLEAR (F4)
To set all fields to <XX. Line: Line Space Full>.

DEFLT (F5)

Available if the active configuration set is a default configuration set. To recall the default settings.

Description of fields

Field	Option	Description
<Fixed Lines:>	From 0 to 5	Defines how many lines do not scroll in SURVEY Survey: Job Name, Auto page when that display mask is used.
<1st Line:>	Output	Fixed to <1st Line: Point ID (auto)>.

Field	Option	Description
<2nd Line:> to <16th Line:>	Annot 1-4	Input field for comments to be stored with the point.
	Attrib (free) 01- $\mathbf{2 0}$ Attrib 01-03 Code (auto) Code (free) Code Type	Output field for attributes for free codes. Input field for attributes for codes. Up to three attribute values can be stored. Choicelist or input field for codes. Output field for free codes. Output field for the type of code, for example point code, line code or area code. Insert full line space. Line Space Full
	Line Space Half Linework	Choicelist with instructions how the software should flag a line/area. Msd Auto Points
Output field for the number of auto points logged after pressing START (F1) in SURVEY Survey: Job Name, Auto page.		

Next step
 CONT (F1) closes the screen and returns to SURVEY Configuration, Auto Points page.

10.3 Auto Points for Post-Processed Kinematic and Real-Time Rover Operations

Requirements Access step-bystep	- <R-Time Mode: None> or <R-Time Mode: Rover> in CONFIGURE Real-Time Mode. <Log Auto Pts: Yes> in SURVEY Configuration, Auto Points page.	
	Step	Description
	1.	Refer to "1.1 Starting an Application Program" to access SURVEY Survey Begin.
	2.	In SURVEY Survey Begin select a job.
	3.	Select a configuration set with <R-Time Mode: None> or <R-Time Mode: Rover>.
	4.	Select an antenna.
	5.	CONT (F1) to access SURVEY Survey: Job Name.
	水	For <Start Logging: Immediately>, logging of auto points begins.
	6.	PAGE (F6) until the Auto page is visible.

SURVEY
Survey: Job Name, Auto page

The softkeys and the field <Auto Pt ID:> are always displayed. Other fields may be displayed depending on the display mask configured.

START (F1)

To start logging of auto points and offset points if configured or, for <Log By: User Decides>, to start the chain to which the auto points should be assigned. The first auto point is stored.
STOP (F1)
To end recording of auto points and offset points if configured or, for <Log By: User Decides>, to end the chain to which the auto points are assigned.
OCUPY (F3)
Available for STOP (F1). To store an auto point at any time.
OFST1 (F4)
To configure recording of the first type of offset points. Available for <Store: DBX(Pnts \& Codes)> in SURVEY Configuration, Auto Points page.

OFST2 (F5)

To configure recording of a second type of offset points. Available for <Store: DBX(Pnts \& Codes)> in SURVEY Configuration, Auto Points page.

SHIFT CONF (F2)

To configure auto points.
SHIFT QUIT (F6)
To exit the Survey application program. Point information logged until pressing SHIFT QUIT (F6) is saved in the database.

Description of fields

Field	Option	Description
<Auto Pt ID:>	User input Time \& Date	Available unless <Auto Pts: Time \& Date> in CONFIGURE ID Templates. The identifier for auto points. The configured ID template for auto points is used. The ID can be changed. To start a new sequence of point ID's type over the point ID. Available for <Auto Pts: Time \& Date> in CONFIGURE ID Templates. The current local time and date is used as identifier for auto points.
<Code (Auto):>	Choicelist	The thematical code for the auto point. - If a point code is selected then any open line/area is closed. The occupied point is stored with the selected code idependently of any line/area. - If a line code is selected then any open line is closed and a new line with the selected code is created. The line ID is defined by the configured line ID template. The occupied point is assigned to that line. The line stays open until it is closed manually or another line code is selected. - If an area code is selected then the behaviour is as for lines. Available for <Thematc Codes: With Codelist>. The setting for <Show Codes:> in CONFIGURE Coding \& Linework determines if either all codes or only point codes are available. The attributes are shown as output, input or choicelist fields depending on their definition.

Field	Option	Description
	User input	Available for <Thematc Codes: Without Codelist>. Codes can be typed in but not selected from a codelist. Configure a display mask with a choicelist for code types to define if a point, line or area code is typed in.

Next step

START (F1) to start logging of auto points. Then, for <Log By: User Decides>, OCUPY (F3) whenever an auto point is to be logged.

10.4 Offset Points of Auto Points

10.4.1 Overview

Description

Computation of offset points

Offset points

- can be created with auto points when auto points are stored to the DB-X.
- can be to the left or to the right of auto points.
- are automatically computed with the logging of auto points, if configured.
- form a chain relative to the chain of auto points to which they are related. Subsequently computed chains are independent from each other.
- can be coded independently of auto points.
- have the same time of when they were stored as the auto points to which they are related.

Up to two offset points can be related to one auto point.
The screens for the configuration of offset points are identical except for the title
Auto Points - Offset 1 and Auto Points - Offset 2. For simplicity, the title Auto
Points - Offset is used in the following description.
The computation of offset points depends on the number of auto points in one chain.

One auto point

No offset points are computed or stored.

Two auto points

The configured offsets are applied perpendicular to the line between two auto points.

Three or more auto points

P0 First auto point
P1 Second auto point
P2 First offset point for P0
P3 Second offset point for P0
P4 Third auto point
P5 First offset point for P1
P6 Second offset point for P1
P7 Fourth auto point
P8 First offset point for P4
P9 Second offset point for P4
d1 Horizontal offset to the left
d2 Horizontal offset to the right
a1 Angle between P0 and P4
a2 Angle between P1 and P7

10.4.2 Configuring Offset Points

Requirements

Access step-bystep

SURVEY
Auto Points -
Offset, General page
<Store: DBX(Pnts \& Codes)> in SURVEY Configuration, Auto Points page.

Step	Description
1.	Refer to "10.3 Auto Points for Post-Processed Kinematic and Real-Time Rover Operations" to access SURVEY Survey: Job Name.
2.	PAGE (F6) until the Auto page is active.
3.	OFST1 (F4) or OFST2 (F5) to access SURVEY Auto Points - Offset.

11:45
SURVEY
Auto Points - Offset 1
Fipneral Pinde.
Store offset1:

CONT (F1)

To accept changes and return to the screen from where this screen was accessed.
OFST2 (F2) and OFST1 (F2)
To switch between configuring offset point type one and two.

Description of fields

Field	Option	Description
<Store Offset1:> and <Store Offset2:>	Yes or No	Activates or deactivates the logging of offset points and all fields on this screen.
<Horiz Offset:>	User input	The horizontal offset between -1000 m and 1000 m at which the offset point is collected.
<Height Offset:>	User input	The height offset between -100 m and 100 m from the related auto point.
ldentifier:	User input	The identifier with up to four characters is added in front of or at the end of the ID of the auto point. This ID is then used as the point ID for the related offset point.
<Prefix/Suffix:>	Prefix or Suffix	Adds the setting for ldentifier: in front of or at at the end of the auto point ID.

Next step

PAGE (F6) changes to the Code page. The setting for <Thematc Codes:> in CONFIGURE Coding \& Linework determines the availability of the fields and softkeys. The setting for <Show Codes:> in CONFIGURE Coding \& Linework determines if either all codes or only point codes are available in the choicelist for <Point Code:>.

11 Survey－Hidden Points

11．1 Overview

Description

な

雨

た

Hidden point meas－ urement methods

Hidden points cannot be measured directly by GPS．This is because they can not be physically reached or because satellites are obstructed，for example by trees or tall buildings．
－A hidden point can be calculated by measuring distances and／or azimuths to the hidden point using a hidden point measurement device．Or for distances a tape may be used．
－Additional auxiliary points may be manually occupied．
－Bearings may be computed from previously occupied points．
A hidden point measurement device can be attached to the receiver such that the measurements are automatically transferred to the receiver．

Changing coordinates of a point which has been previously used in hidden point measurements does not result in the hidden point being recomputed．

Hidden point measurements are possible for＜R－Time Mode：Rover＞and＜R－Time Mode：None＞．For＜R－Time Mode：None＞the hidden point can be calculated in LGO．

A hidden point can be measured by
－Bearing and distance－Chainage and offset
－Double bearing－Backwards bearing and distance
－Double distance

Heights are taken into account if configured．Refer to the GPS System Field Manual for information on configuring height offsets．

Refer to the GPS System Field Manual for information on how to configure hidden point measurements．
＜Azimuth：＞is used throughout this chapter．This should always be considered to also mean＜Bearing：＞．

Auxiliary points are used to compute azimuths required for the calculation of hidden point coordinates．Auxiliary points can be points existing in the job or they can be manually occupied．The point ID template configured for＜Auxil Pts：＞in CONFIGURE ID Templates is applied．

11.2 Measuring Hidden Points

Diagrams

Bearing \& Distance

Double Bearing

Double Distance

Known

P0 Known point, Point: To be measured
d Distance from P0 to P2
a Bearing from P0 to P2
P1 Auxiliary point, optional

Unknown

P2 Hidden point

Known

P0 First known point, <Point A:>
P3 Second known point, <Point B:>
To be measured
a1 Bearing from P0 to P2
a2 Bearing from P3 to P2
P1 First auxiliary point, optional
P4 Second auxiliary point, optional Unknown
P2 Hidden point

Known

P0 First known point, <Point A:>
P2 Second known point, <Point B:>
d3 Line from P0 to P2
a Right of d3
b Left of d3
To be measured
d1 Distance from P0 to P1
d2 Distance from P2 to P1
Unknown
P1 Hidden point

Chainage \& Offset

Known

P0 First known point, <Point A:>
P1 Second known point, <Point B:>
To be measured
d1 Chainage
d2 Offset
Unknown
P2 Hidden point

Backwards Bearing \& Distance

Known

P0 Known point, Point:
To be measured
a Bearing from P2 to P0
d Distance from P2 to P0
P1 Auxiliary point, optional
Unknown
P2 Hidden point

Access

HIDDEN PT
Hidden Point Measurement

Press H PNT (F5) in SURVEY Survey: Job Name, Survey page.
The setting for Method: in this screen determines the availability of the subsequent fields and softkeys.

To measure the distance without pressing DIST on the Disto. Available for Leica Disto ${ }^{T M}$ pro 4 and Leica Disto ${ }^{T M}$ pro ${ }^{4}$ a when a distance field is highlighted.

SUN (F3)

The azimuth from the direction of the sun to a known point is computed. The location of the hidden point can be away from the sun or in the direction towards the sun. Ensure the shadow of the pole falls in the direction of the hidden point. Available if Azimuth: is highlighted.

AZMTH (F4)

To select or manually occupy an auxiliary point and to compute the azimuth. The location of the auxiliary point can be in the direction towards the hidden point or away from the hidden point. Available if Azimuth: is highlighted.

POS? (F4)

To determine chainage and offset of the current position relative to the line between the two known points. The values are displayed in Chainage: and Offset:. The point from where the chainage has been measured is selected in <Chainage From:>. Available for <Method: Chainage \& Offset>.

SURVY (F5)

To manually occupy the known point for the calculation of the hidden point. Available if Point:, <Point A:> or <Point B:> is highlighted.

SLOPE (F5)

To measure a slope distance and an elevation angle or percentage grade. The slope distance and the elevation angle can either be typed in or measured with a hidden point measurement device. The values are used to compute the horizontal distance. Available if <Horiz Dist:> is highlighted.

SHIFT CONF (F2)

To configure hidden point measurements.

Description of fields

Field	Option	Description
Method:	Choicelist	The hidden point measurement method.

Field	Option	Description
Point:, <Point A:> or <Point B:>	Choicelist	The point ID of the current position. This is a known point for the calculation of the hidden point. To type in coordinates for the known
point open the choicelist when this		
field is highlighted. Press NEW (F2) to		
create a new point.		

Next step

CALC (F1) calculates the hidden point and displays the results in HIDDEN PT Hidden Point Result, Result page.

HIDDEN PT Hidden Point Result, Result page

The displayed fields and softkeys depend on the hidden point measurement method used.

Result	C.nde	Plnt	
Point	ID		111
Check	Dist	A	25.3180
Cheek	Dist	B :	4.2406
Check	Dist	$A B$:	23.5919

Q1a		
STORE	NEXT	PAGE

To store the hidden point and to return to the screen from where HIDDEN PT Hidden Point Measurement was accessed.
NEXT (F5)
To store the hidden point and to return to HIDDEN PT Hidden Point Measurement. Another hidden point can be measured.
SHIFT INDIV (F5) and SHIFT RUN (F5) To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.
SHIFT QUIT (F6)
To not store the hidden point and to return to the screen from where HIDDEN PT Hidden Point Measurement was accessed.

Description of fields

Field	Option	Description
<Point ID:>	User input	The identifier for the hidden point. The config- ured point ID template is used. The ID can be changed in the following way:
-To start a new sequence of point ID's type over the point ID. For an individual point ID independent of the ID template SHIFT INDIV (F5). SHIFT RUN (F5) changes back to the next free ID from the configured ID template.		
<Check Dist AB:>	Output	The computed horizontal distance between <Point A:> and <Point B:>. Available for <Method: Double Bearing>, <Method: Double Distance> and <Method: Chainage \& Offset>.
<Check Brg AB:>	Output	The computed bearing from <Point A:> to <Point B:>. Available for <Method: Double Bearing>.

Field	Option	Description
<Check Dist A:>	Output	The computed horizontal distance between <Point A:> and the hidden point. Available for <Method: Double Bearing> and <Method: Chainage \& Offset>.
<Check Dist B:>	Output	The computed horizontal distance between <Point B:> and the hidden point. Available for <Method: Double Bearing> and <Method: Chainage \& Offset>.
<Check Chng A:>	Output	The computed distance on the line from <Point A:> to <Point B:> from <Point A:> to the point of intersection with <Check Offset:>. Available for <Method: Double Distance>.
<Check Chng B:>	Output	The computed distance on the line from <Point B:> to <Point A:> from <Point B:> to the point of intersection with <Check Offset:>. Available for <Method: Double Distance>.
<Check Offset:>	Output	The computed perpendicular distance from the hidden point to the line from <Point> A> to <Point B:>. Available for <Method: Double Distance>.

Computed distances for <Method: Double Distance>

P0 First known point, <Point A:>
P1 Hidden point
P2 Second known point, <Point B:>
d1 Distance from P0 to P1
d2 Distance from P2 to P1
d3 <Check Chng A:>
d4 <Check Chng B:>
d5 <Check Offset:>
d6 <Check Dist AB:>

Next step

PAGE (F6) changes to Code page.

HIDDEN PT
Hidden Point
Result,
Code page

The setting for <Thematc Codes:> in CONFIGURE Coding \& Linework determines the availability of the fields and softkeys. They are identical to those of thematical coding with/without codelist. Refer to the GPS1200 Technical Reference Manual for information on coding.

Next step

PAGE (F6) changes to the Plot page.

Compute an azimuth using the sun-diagram

P0 Known point
P1 Hidden point
a Bearing from P0 to P1

GPS12_073

P0 Known point
P1 Hidden point
a Bearing from P0 to P1

Compute an azimuth using auxiliary points diagram

P0 Known point
P1 Auxiliary point, <Azimuth Pt:>
P2 Hidden point
a Bearing from P2 to P0

PO Known point
P1 Auxiliary point, <Azimuth Pt:>
P2 Hidden point
a Bearing from P0 to P2

Compute hori-

 zontal distances from slope distances diagram

P0 Known point
P1 Hidden point
d1 Slope distance
d2 Horizontal distance
a Elevation angle

11.3 Hidden Point Measurement Including Heights

Diagram

Requirements

Access

HIDDEN PT
Hidden Point Measurement

P0 Known point
P1 Target point
P2 Hidden point
a Height of P0
b Height of P2 = a $+\mathrm{d} 1+\mathrm{d} 4-\mathrm{d} 3$
d1 Device height: Height of hidden point measurement device above P0
d2 Slope distance
d3 Target height: Height of P1 above P2
d4 Height difference between hidden point measurement device and P1
d5 Horizontal distance

- <Compute Ht: Yes> in CONFIGURE Hidden Point Measurements.
- <Height Offset: Device \& Trgt Ht> in CONFIGURE Hidden Pt Device Offsets.

Press H PNT (F5) in SURVEY Survey: Job Name, Survey page.
Most of the fields and softkeys are identical to those available for hidden point measurements without heights. Refer to "11.2 Measuring Hidden Points" for information on the identical fields and softkeys.

HGTS (F3)

To define the device and the target height.

Description of fields

Field	Option	Description
< Δ Height:>	User input	The positive or negative height difference between the centre of the hidden point measurement device and the target point. When a hidden point meas- urement device is attached to the receiver to measure the height difference, the value is auto- matically transferred. For hidden point measurement methods using two known points, < Δ Height:> must be determined from each known point.
\ll Height:> can be computed using		
SLOPE (F5).		

CONT (F1)

To return to HIDDEN PT Hidden Point Measurement.

Description of fields

Field	Option	Description
<Device Ht at Pt A:>	User input	The height of the hidden point measurement device above Point: respective <Point A:>.
<Target Ht:>	User input	The height of the target point above the hidden point when measured from Point: respective <Point A:>.
<Device Ht at Pt B:>	User input	Available for hidden point measurement methods using two known points. The height of the hidden point measurement device above <Point B:>.
<Target Ht:>	User input	Available for hidden point measurement methods using two known points. The height of the target point above the hidden point when measured from <Point B:>.

Next step

Step	Description
1.	CONT (F1) to close the screen and to return to HIDDEN PT Hidden Point Measurement.
<	< Height:> in HIDDEN PT Hidden Point Measurement still displays the positive or negative height difference between the centre of the hidden point measurement device and the target point. The height of the hidden point measurement device above the ground and the height of the target point above the hidden point are applied when the hidden point is computed.
2.	HIDDEN PT Hidden Point Measurement Continue with the hidden point measurements.

Step	Description
When STORE (F1) is pressed in HIDDEN PT Hidden Point Measure-	
ment, the height of the hidden point is computed and stored. For hidden point measurement methods using two known points, this is done for each known point. In this case, the height of the hidden point is the average.	

12 Survey Cross Section

12.1 Overview

Description

Template

Cross section methods and directions

The Survey Cross Section application program allows for the automatic changing of codes during a survey.

The codes for the elements in the cross section to be surveyed are all stored and pre-defined in a template. The codes are then automatically changed after each point observation.

Templates are used to pre-define the order of the codes for the survey.
A template pre-defines

- the coding sequence of a cross section.
- the type of coding.

Templates can be applied

- to the ZigZag method or the Same Direction method.
- in either a forward direction or in a backward direction.

ZigZag

GPS12_168

Same Direction

GPS12_169

Survey Cross Section is possible for <R-Time Mode: Rover> and <R-Time Mode: None>.

12．2 Configuring Survey Cross Section

Access

X－SECTION
Configuration， General page

Step	Description
1.	Press PROG．
2.	Highlight Survey Cross Section．
3.	CONT（F1）
4.	In X－SECTION Begin press CONF（F2）to access X－SECTION Configu－ ration．

$\frac{11: 38}{\mathrm{x} \text { SECTION }}$		
Configuration 区		CONT（F1）
fieneral		
Method Direction	ZigZag ${ }^{\text {d }}$	To accept changes and return to the
	Forward 1	screen from where this screen was
Show Attrib Show Dist	：1性	accessed．
	：Yes面	DMASK（F3）
Display Mask		Available for＜Display Mask：＞being highlighted on General page．To edit
	k：＜None＞㥩	
	Q1a	the display mask currently being
CONT		displayed in this field．
		SHIFT ABOUT（F5）
		To display information about the program name，the version number， the date of the version，the copyright and the article number．

Description of fields

Field	Option	Description
＜Method：＞	ZigZag or Same Direction	Method by which subsequent cross sections will be surveyed．Refer to＂12．1 Overview＂for a diagram．
＜Direction：＞	Forward	The cross sections will be surveyed in the same way as the elements are defined in the selected ＜Template：＞in X－SECTION Survey：Job Name． The cross sections will be surveyed in the reverse way as the elements are defined in the selected＜Template：＞in X－SECTION Survey： Job Name．
＜Show Attrib：＞	Choicelist	Defines which attribute field is displayed in X－ SECTION Survey：Job Name．Useful if the surveyor is stringing－can then see that the correct string attribute value is being used．

Field	Option	Description
<Show Dist:>	Yes or No	Activates an output field in X-SECTION Survey: Job Name. The horizontal grid distance from the current position to the point last surveyed for the same cross section will be displayed.
<Display Mask:>	Choicelist	The user defined display mask is shown in X- SECTION Survey: Job Name.

Next step

CONT (F1) to return to X-SECTION Begin followed by CONT (F1) to access XSECTION Survey: Job Name.

12.3 Surveying Cross Sections

Access	Refer to "12.2 Configuring Survey Cross Section" to access X-SECTION Survey: Job Name.

X-SECTION
Survey: Job Name, General page

The pages shown are those from a typical configuration set. An additional page is available when a user defined display mask is used.

$\frac{11: 59}{\text { X-SECTION }}$	
Survey: Job1 X	
Fieneral Man\|	
Point ID	802
Antenna Ht	2.000 m
Template	001性
Element	1/3
Code	TOE
D1st to Last	t : -..... m

OCUPY (F1)

To start measuring the next point of the cross section. (F1) changes to STOP. Available if a template has been opened with START (F4).

STOP (F1)

To end measuring the point. (F1) changes to STORE.
STORE (F1)
To store the measured point. (F1) changes to OCUPY.

START (F4) and END (F4)

To open and close the selected cross section template. While the template is open, the elements of the cross section can be surveyed.

SURVY (F5)

To manually occupy a point that is not part of the cross section. The point is not treated as an element of the cross section. The open template remains open. Available if a template has been opened with START (F4).
SHIFT CONF (F2)
To configure the Cross Section Survey application program.
SHIFT PREV (F3)
To select the previous element of the cross section template. The currently measured element will not be stored. Available for STOP (F4) being displayed.

SHIFT NEXT (F4)

To select the next element of the cross section template. The currently measured element will not be stored. Available for STOP (F4) being displayed.
SHIFT INDIV (F5) and SHIFT RUN (F5)
To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.

Description of fields

Field	Option	Description
<Point ID:>	User input	The identifier for manually occupied points. The configured point ID template is used. The ID can be changed in the following ways: - To start a new sequence of point ID's type over the point ID. - For an individual point ID independent of the ID template SHIFT INDIV (F5). SHIFT RUN (F5) changes back to the next ID from the configured ID template.
<Antenna Ht:>	User input	The default antenna height as defined in the active configuration set is suggested. Changing the antenna height here does not update the default antenna height as defined in the active configuration set.
Template:	Choicelist Output	The cross section template is closed. \qquad is displayed if no template is defined. The cross section template is open.
Element:	Output	x Number of next element on active template. y Total number of elements on active template.
Code:	Output	The name of the code.
<Stringline ID:>	Output	Available for <String Attrib:> being activated in CONFIGURE Coding \& Linework, Coding page. Points that have the same code attached and belong to different cross sections are strung to one line.
<Dist to Last:>	Output	The horizontal grid distance from the current position to the last surveyed point. \qquad is displayed for unavailable information.

Next step

IF	THEN
a cross section template is to be opened	select the desired Template:. START (F4).
an element of a cross section is to be surveyed	OCUPY (F1), STOP (F1) and then STORE (F1).
a cross section template is to be closed	select the desired Template:. END (F4).
data is to be viewed graphically	PAGE (F6). An element of a cross section template can also be surveyed from the Map page.

12.4 Cross Section Templates

12.4.1 Accessing Cross Section Template Management

Access step-bystep

Step	Description
1.	Press PROG.
2.	Highlight Survey Cross Section.
3.	CONT (F1)
4.	In X-SECTION Begin press CONT (F1) to access X-SECTION Survey: Job Name.
5.	X-SECTION Survey: Job Name, General page Open the choicelist for Template:.

X-SECTION Templates

All cross section templates stored in the active job are listed in alphabetical order, including the number of elements in each cross section template.

CONT (F1)

To select the highlighted cross section template and to return to the screen from where this screen was accessed.
NEW (F2)
To create a cross section template. Refer to "12.4.2 Creating/Editing a Cross Section Template".
EDIT (F3)
To edit the highlighted cross section template. Refer to "12.4.2 Creating/Editing a Cross Section Template".
DEL (F4)
To delete the highlighted cross section template.
COPY (F5)
To create a cross section template based on the one currently highlighted.

Next step

Step	Description
1.	highlight the desired cross section template.
2.	CONT (F1) closes the screen and returns to the screen from where \mathbf{X} - SECTION Templates was accessed.

12.4.2 Creating/Editing a Cross Section Template

Access

な

X-SECTION
New Template, General page

X-SECTION New Template, Elements page

Step	Description
1.	Open the choicelist for Template: in X-SECTION Survey: Job Name, General page.
2.	X-SECTION Templates - Is a cross section template to be created from scratch? NEW (F2) to access X-SECTION New Template. -Is a cross section template to be created based on the one currently highlighted? COPY (F5) to access X-SECTION New Template. Is a cross section template to be edited? EDIT (F3) to access X-SECTION Edit Template.

Copying and editing cross section templates is similar to creating a new cross section template. For simplicity, the screens are called MANAGE XX Template.

Type in a name for the new cross section template.

Next step

PAGE (F6) changes to the Elements page.
The elements existing in the template are listed.
Description of columns

Field	Description
No.	The number of the element.
Code	The code assigned to the element. ---- is displayed if no code is assigned to the element.
Code Type	The type of the code assigned to the element.

Next step

IF	THEN
the creation of a template is finished	STORE (F1).
an element is to be added	ADD (F2) or ->ADD (F5). Refer to paragraph "X-SECTION Add Element".
an element is to be edited	EDIT (F3). Refer to paragraph "X-SECTION Add Element".

X-SECTION Add Element

The functionality of the screens X-SECTION Insert Element and X-SECTION Edit Element in Template is very similar.

CONT (F1)

To add the element at the end of the cross section template or to store the changes. To return to the screen from where this screen was accessed.

NEXT (F5)

Available in X-SECTION Add
Element. To add the element at the end of the cross section template. To stay in this screen and create the next element.
PREV (F5)
Available in X-SECTION Edit
Element in Template. To store the changes. To stay in this screen and edit the previous element.
NEXT (F6)
Available in X-SECTION Edit
Element in Template. To store the changes. To stay in this screen and add the next element.

Description of columns

Field	Option	Description
<Element No.:>	Output	For X-SECTION Add Element and X-SECTION Insert Element: The number of the element to be added. For X-SECTION Edit Element in Template: x \quad Number of the element to be edited. y \quad Total number of elements on the active template.
<Code Type:>	Free Code	To store a code independent of the element as time related information.
<Rec Free Code:>	After Point or Before Point	Available for <Code Type: Free Code>. Determines if a free code is stored before or after the point.
<Code (free):>	Choicelist	The code which will be stored before or after the point/line. Available for <Code Type: Free Code>.
Code:	Choicelist	The code which will be stored with the next point/line. Available for <Code Type: Thematic Codes>.

Field	Option	Description
Attribute name	Output	The attribute and the attribute value which will be stored with the point/line. Available unless <Show Attrib: Do Not Show> in X-SECTION Configuration.

Next step

CONT (F1) adds the element or stores the changes and returns to X-SECTION New Template, Elements page.

13 Volume Calculations

13.1 Overview

Description

Point types

The Volume Calculations application program allows surfaces to be measured and volumes (and other information) to be computed from these surfaces. It can be used for the following tasks:

- Measuring points defining a surface.
- Calculating the triangulation of the measured surface points to establish the surface.
- Calculating the volume between a triangulated surface and a reference.

Volume calculations are possible for <R-Time Mode: Rover> and <R-Time Mode: None>.

Surfaces can be created from points stored as:

- Local grid.

Height mode can be ellipsoidal or orthometric.

13.2 Configuring Volume Calculations

Access

VOLUMES
Configuration, Logfile page

Step	Description
1.	Press PROG.
2.	Highlight Volume Calculations.
3.	CONT (F1)
4.	In VOLUMES Volume Calculations Begin press CONF (F2) to access VOLUMES Configuration.

The explanations for the softkeys given below are valid for all pages, unless otherwise stated.

To accept changes and return to the screen from where this screen was accessed.
SHIFT ABOUT (F5)
To display information about the program name, the version number,
 the date of the version, the copyright and the article number.

Description of fields

Field	Option	Description
<Write Logfile:>	Yes or No	To generate a logfile when the application program is exited.
<File Name:>	Choicelist	Available for <Write Logfile: Yes>. The name of the file to which the data should be written.
<Format File:>	Choicelist	Available for <Write Logfile: Yes>. A format file defines which and how data is written to a logfile. Format files are created using LGO.

Next step

PAGE (F6) returns to the screen from where this screen was accessed

13.3 Survey Points

Description

VOLUMES

Surface Points
Survey page

To measure points to a new surface or to an existing surface in the active job. If no surfaces currently exist in the active job, the user has to enter a New Surface first in VOLUMES Choose Task \& Surface. The menu items Triangulate Surface and Compute Volume within the VOLUMES Volumes \& Surfaces Menu are marked grey if no surface exists in the active job.

The pages shown are those from a typical configuration set.

OCUPY (F1)
To start measuring the surface point. (F1) changes to STOP.
STOP (F1)
To end measuring the surface point.
(F1) changes to STORE.
STORE (F1)
To store the measured surface point.
(F1) changes to STORE.
NEAR (F2)
To search <Volumes Job:> for the
point nearest to the current position when the key is pressed. The point is selected as the point to be measured and is displayed in the first field on the screen. Available when OCUPY (F1) is displayed.
>BNDY (F3) / >SURF (F3)
To change the class of the point to be measured between surface point and boundary point.
SHIFT CONEC (F3) and SHIFT DISCO (F3)
To dial the number of the reference station configured in the active configuration set and to hang up immediately after the survey is completed. Available for OCUPY (F1) or STORE (F1) being displayed and for real-time devices of type digital cellular phone or modem.

SHIFT INIT (F4)

To force a new initialisation. Available for OCUPY (F1) or STORE (F1) being displayed and for configuration sets allowing phase fixed solutions.
SHIFT INDIV (F5) and SHIFT RUN (F5)
To change between entering an individual point ID different to the defined ID template and the running point ID according to the ID template.

Description of fields

Field	Option	Description
<Point ID:>	User input	The identifier for manually occupied points. The configured point ID template is used. The ID can be changed in the following ways: - To start a new sequence of point ID's type over the point ID. For an individual point ID independent of the ID template SHIFT INDIV (F5). SHIFT RUN (F5) changes back to the next free ID from the configured ID template.
<Antenna Ht:>	User input	The default antenna height as defined in the active configuration set is suggested. Changing the antenna height here does not update the default antenna height as defined in the active configuration set.
<3D CQ:>	Output	The current 3D coordinate quality of the computed position.

Next step

Press ESC returns to the VOLUMES Choose Task \& Surface screen.
Press ESC again returns to the VOLUMES Volume Calculations Menu screen.

13.4 Triangulate Surfaces

Definition

VOLUMES
Triangulate Surface, General page

To calculate the triangulation (triangulation method: delauny) of the measured surface points to establish the surface.

CONT (F1)
To access VOLUMES Boundary Definition. (F1) changes to CALC. PAGE (F6)

To change to another page on this screen.
SHIFT CONF (F2)
To configure the program.
SHIFT DEL S (F4)
To delete the surface.

Description of fields

Field	Option	Description
<Surface Name:>	Choicelist	Name of the surface to be triangulated.
<No. Surf Pts:>	Output	Number of the measured surface points.
<No. Bndy Pts:>	Output	Number of the measured boundary points.
<Last Pt ID:>	Output	ID of the last measured point of the chosen surface.
<Last Pt Date:>	Output	Date of the last measured point of the chosen surface.
<Last Pt Time:>	Output	Time of the last measured point of the chosen surface.

Next step

CONT (F1) continues to the VOLUMES Boundary Definition screen.

VOLUMES
Boundary
Definition, Points page

CALC (F1)
To start calculating the triangulation and to access to the VOLUMES Triangulation Results.
ADD 1 (F2)
To add points from the active job to the surface.
UP (F3)
To move the focused point one step up within the boundary definition.
DOWN (F4)
To move the focused point one step down within the boundary definition.

SHIFT HOME (F2)

To move the focus to the top of the points list.
SHIFT END (F3)
To move the focus to the bottom of the points list.

SHIFT REM 1 (F4)

To remove the marked point from the surface.
SHIFT EXTRA (F5)
To access to the VOLUMES Extra Menu.

Next step

SHIFT (F5) continues to the VOLUMES Extra Menu screen.

The Extra menu

CONT (F1)

To select the highlighted option and to continue with the subsequent screen.

Menu Option	Description
<Add Many Points>	Access Data Manage and all points that are in the list.
<Remove All Points>	Method to remove all points that are indicated in the Boundary Definition points page.
<Sort Points by Time>	Method to sort all points in the Boundary Definition points page by the time they were stored.
<Sort Points by Proximity>	Method to sort all points in the Boundary Definition points page by the closest proximity.
<Compute Rubber Band Boundary>	Method to define a new boundary as if a rubber band was placed around the points. The current list of boundary points will be ignored.

Next step

CONT (F1) returns to the previous screen.
CALC (F1) calculates the triangulation and continues to the VOLUMES Triangulation Results screen.

VOLUMES
Triangulation
Results,
Summary page

$\frac{09: 30}{\text { VOLLMMES }}-\alpha$		
Triangulation Results $\underbrace{\text { a }}$		
Sunmary Details/Mand		
Surface Name	51	DONE (F1)
		To close the triangulation of the
Arca No. Triangles:	$\begin{gathered} 24727.08 \mathrm{~m}^{2} \\ 217 \end{gathered}$	surface and return to Volumes
		Calculations Menu.
No. Surf Pts	93	DXF (F4)
No. Bndy Pts	33	To export the triangulation results to
DONE	DXF PAGE	a DXF file on the data or root directory of the CF Card.
		SHIFT CONF (F2)
		To configure the program.

Description of fields

Field	Option	Description
<Surface Name:>	Output	Name of the surface.
Area:	Output	Area of the base plane.
<No. Triangles:>	Output	Number of triangles used within the trian- gulation.
<No. Surf Pts:>	Output	Number of points inside the surface.
<No. Bndy Pts:>	Output	Number of boundary points of the surface.

Next step

DONE (F1) returns to the Volume Calculation Menu screen.

13.5 Compute Volumes

Description

VOLUMES

Compute Volume

To compute the volume of an triangulated surface by using a reference (3D point or elevation) or the stockpile method.

Description of fields

Field	Option	Description
Method:	Choicelist	To calculate the volume of the triangulated surface using: - Stockpile (volume between the triangulated surface and the plane defined by the boundary points of the surface). Surface to Elev (volume between the trian- gulated surface and the height entered by the user). Surface to Point (volume between the trian- gulated surface and the height of a selected point).
<Surface Name:>	Choicelist	Surface chosen from the triangulated surfaces currently stored to the active job.
<No. Triangles:>	Output	Number of triangles from the triangulated surface.

Next step

CALC (F1) calculates the volume and continues to the VOLUMES Volume Calculation Results screen.

VOLUMES

Volume Calculation
Results
Summary page

Area	$:$	$24727.08 \mathrm{~m}^{2}$
Net Volume	$:$	$228439.47 \mathrm{~m}^{2}$

Description of fields

Field	Option	Description
<Surface Name:>	Output	Surface.
Area:	Output	Area of the base plane.
<Net Volume:>	Output	Volume of the surface.

Next step

PAGE (F1) changes to the Details page.
Description of fields

Field	Option	Description
<Min Elevation:>	Output	Minimal elevation of the calculated volume.
<Max Elevation:>	Output	Maximal elevation of the calculated volume.
<Avg Thickness:>	Output	Average thickness of the calculated volume.
Perimeter:	Output	Perimeter of the measured surface area (intersection of the measured surface to the reference datum).

Next step

CONT (F1) returns to the Volume Calculation Menu screen.

14 Wake-Up

14.1 Overview

Description

Access
WAKE-UP
Wake-Up Sessions

Wake-up sessions are static point occupations for which the receiver is preprogrammed with an automatic start time and a duration during which the point's position is measured.

A CompactFlash card must be inserted when the receiver wakes up. If no CompactFlash card is fitted or it is damaged, not formatted or full then the session will not be executed.

The PIN code, if activated in CONFIGURE Start Up \& Power Down, PIN Code page, is not checked if a wake-up session starts.

Select Main Menu: Programs...IWake-Up.

CONT (F1)

To return to the screen from where this screen was accessed.
NEW (F2)
To create a new wake-up session. EDIT (F3)

To edit a wake-up session.
DEL (F4)
To delete a wake-up session. SHIFT DEL-A (F4)

To delete all stored wake-up sessions.

Description of columns

Column	Description
No.	The wake-up session number, from 1 to 20.
ma	Indicates which wake-up session is next to be activated.
Start Date	The local starting date of the wake-up session.
Start Time	The local starting time of the wake-up session.
Repeat	The number of times the wake-up session will be repeated.

Next step

IF	THEN
the wake-up sessions do not need to be changed	CONT (F1) closes the screen and returns to the screen from where WAKE-UP Wake-Up Sessions was accessed.
a wake-up session is to be created	NEW (F2). Refer to "14.2 Creating a New Wake-Up Session/Editing a Wake-Up Session".
a wake-up session is to be edited	highlight the wake-up session and EDIT (F3). Refer to "14.2 Creating a New Wake-Up Session/Editing a Wake-Up Session".

14.2 Creating a New Wake-Up Session/Editing a Wake-Up Session

Access step-bystep

雨

WAKE-UP
XX Wake-Up
Session,
General page

Step	Description
1.	Refer to "14.1 Overview" to access WAKE-UP Wake-Up Sessions.
2.	NEW (F2)/EDIT (F3) to access WAKE-UP New Wake-Up Session/WAKE-UP Edit Wake-Up Session.

Editing a wake-up session is similar to creating a new wake-up session. For simplicity the screens are called WAKE-UP XX Wake-Up Session and differences are clearly outlined.

A new wake-up session can still be created when there is no CompactFlash card fitted, though there will be differences in the way the menu works.

STORE (F1)

To store the changes and to return to the screen from where this screen was accessed.
TMPLT (F3)
Available for some options for $<\mathrm{Pt}$ Input:>. To configure ID templates.

Description of fields

Field	Option	Description
<Config Set:>	Choicelist	The active configuration set for the wake-up session.
Job:	Choicelist	The active job for the wake-up session.
<Pt Input:>	From Job or Manual Pt ID Template	Allows points from the job to be selected or point ID's to be typed in for <Point ID:>. Allows points from an point ID template to be entered for <Point ID:>.
<Point ID:>	Choicelist User input	Available for <Pt Input: From Job>. Available for <Pt Input: Manual>. Input a new point ID. Available for <Pt Input: Pt ID Template>. A point ID can be selected from an ID template using TMPLT (F3).
<Antenna Ht:>	User input	Height of the antenna to be used during the wake-up session. Changing the antenna height here does not update the default antenna height as defined in the active configuration set.

WAKE-UP XX Wake-Up Session, Timing page	Next step PAGE (F6) changes to the Timing page.		
	$\frac{\text { 18: } 15}{\text { WAKKE-UP }}-\alpha$ Edit Wake-Up fieneral Tining Start Date Start Time Start Occupat Duration End Time No. of Repeat STORE \square		STORE (F1) To store the changes and to return to the screen from where this screen was accessed. TMPLT (F3) Available for some options for $<\mathbf{P t}$ Input:>. To configure ID templates.
	Description of fields		
	Field	Option	Description
	<Start Date:>	User input	Local date to start wake-up session.
	<Start Time:>	User input	Local time to start wake-up session. There must be at least three minutes between consecutive wake-up sessions. No wake-up session can coincide with another session.
	<Start Occupat:>	User input	Local time to start the point occupation (two minutes after <Start Time:>).
	Duration:	From 3 mins to 48 hrs	Length of time the wake-up session should last for.
	<End Time:>	Output	Time wake-up session will end calculated from the start time and duration.
	<No. of Repeat:>	User input	Number of times the wake-up session should be repeated (max. 1000).
	Interval:	From 10 mins to 168 hrs	Time interval between repeated wake-up sessions.

[^6]A
ABS 130
Absolute difference, check 130
ADD 40
ADD1 40
ADJST 55
Application programs
Open, maximum number 7
Area calculations
COGO calculation method 33
Arrow, orientate to 113
Auto points 131
Configure 132
Store 133
Auxiliary points
Azimuth computation 148
Hidden point measurements 141
Average, check residuals 129
AVGE 129
Azimuth, compute
Determine Coordinate System 77
Hidden point measurement 148
B
Backward in Survey Cross Section 154
Beep, auto points 134
C
Chainage 80
Reference Line 79
COGO 11
Configure 13
Distance input/output 13
Modify values 17, 26
Combined Scale Factor 72
Computation, offset point 139
Control points 53
Coordinate geometry calculations 11
Coordinate system, determine 53
Coordinates
Set for real-time reference 127
Cross Section Survey, configure 154
Cross Section Template
Create 159
Edit 159
CSF 72
D
Default settings for auto points, recall 134
DEL-A 173
Delete
Cross section template 158
Matched points 44, 60
Determine Coordinate System
One point localisation
Classic 3D transformation 76
Onestep transformation 68
Twostep transformation 68
Determine Coordinate System, configure Normal 55
One point localisation 57
Device height
Hidden point measurements 149
Difference limit exceeded in Stakeout 119
Display mask for auto points 134
Distance, input/output in COGO 13
Distribution
Residuals COGO Shift, Rotate \& Scale 14
Residuals throughout transformation area 56
DMASK, auto points 132
Documentation 2
DTM layer, select 8
DTM, stakeout 114
Dual frequency receivers Observation times 124
E
EAO, hidden point measurements 143
Edit, wake-up session 175
Ellipsoid distance in COGO 13
Exceeded limit
Auto points 134
Difference in Stakeout 119
F
FIX 55
Forward in Survey Cross Section 154
G
Grid distance in COGO 13
Ground distance in COGO 13
H PNT143
Height offset, stakeout 114
Heights, hidden point measurement 149
HERE, reference position 127
Hidden point measurement, heights 149
Hidden points 141
Measure 142
I
INDIV 108, 123
Intersections, COGO calculation method 29
INV 25
Inverse, COGO calculation method 15
lonospheric disturbance 125
L
Last point, orientate to 112
LAST, reference position 127
Layer, DTM, select 8
Licence key 7
Line calculations
COGO calculation method 33
Line, orientate to, Stakeout 113
Logfile 10
M
MATCH 44, 60
Match
Point parameters 55
Points 44, 60
Matching points, edit 64
Maximum number
Open application programs 7
Measured point 79
Minimum number of satellites 124
Modify values in COGO 17, 26
N
Navigation position, reference position 127
Negative offset, COGO 25
Next available point ID
Real-time rover operations 130
Static operations 123
North, orientate to 112
0
Observation times, static operations 124
Occupy staked point 116
Offset
Reference Line 88
Reference Plane 104
Stakeout, height 114
Type in
COGO intersection 30
COGO traverse 27
Offset point
Computation 139
Configure 140
Description 131
Offset, plane 102
Orientate 112
ORIGN 105
P
Parameters, set for transformation 56
PLANE 108
Point
Auto 131
Auxiliary 141
Azimuth computation 148
Hidden 141
Orientate to, Stakeout 112
Point ID, next available
Real-time rover operations 130
Static operations 123
POS? 144
Positive offset, COGO 25
Post-processed kinematic operations 126
ppm, transformation results 65
Preparations, pre-survey 121
PROG 7
RRANGE40
Real-time
Reference operations 127
Rover operations 129
Recall
Default settings for auto points 134
Previous result, COGO 17, 26
Reference arc
Define 83
Define offsets 88
Delete 86
Enter manually 83
Manage 82
Measure to 91
Select from job 85
Stake to 95
Reference lineConfigure80
Define 83
Define offsets 88
Delete 86
Enter manually 83
Manage 82
Measure to 91
Select from job 85
Stake to 95
Reference plane
Tilted 101
Reference point 79
Reference station, last used 127
REM A 40
Residual
Check for averaged positions 129
Distribution COGO Shift, Rotate \& Scale 14
Distribution throughout transformation area 56
Results, hidden point measurements 143
Resurvey staked point 119
RSLT1 31
RSLT2 31
RUN 108, 123
RX1200
With/without touch screen 2
S
Same Direction, Survey Cross Section 153
Satellites, minimum number 124
Scale factor, combined 72
Scale, transformation results 65
Select, DTM layer 8
Shift, Rotate \& Scale
COGO, match points 44
Single frequency receiver
Observation times 124
Skip point in Stakeout 119
Slope distanceHidden point measurement148
Stakeout
Configure 112
Difference limit exceeded 119
Stakeout DTM 114
Static operations 123
Store auto points 133
Sun
Azimuth computation 148
Orientate to 112
Survey
Auto points 131
Hidden points 141
Post-processed kinematic operations 126
Preparations 121
Real-time reference operations 127
Real-time rover operations 129
Static operations 123
Survey Cross Section
Direction 154
Methods 153
Surveying points 121
T
Target height, hidden point measurements 149
Target point 79
Template, Survey Cross Section 153, 158
TMPLT 175, 176
Transformation
Requirements 53
Results 65
Set parameters 56
Traverse, COGO calculation method 25
U
Update, coordinate system 8
W
Wake-up session 173
Create 175
Delete 173
Edit 175
Overview 173
Z
ZigZag, Survey Cross Section 153

Total Quality Management: Our commitment to total customer satisfaction.

ISO 9001/ISO 14001

Leica Geosystems AG, Heerbrugg, Switzerland, has been certified as being equipped with a quality system which meets the International Standards of Quality Management and Quality Systems (ISO standard 9001) and Environmental Management Systems (ISO standard 14001).

Ask your local Leica Geosystems dealer for more information about our TQM program.

[^0]: Next step
 PAGE (F6) changes to the Residuals page.

[^1]: Next step
 CONT (F1) continues to DET C SYS Step 2: Choose Parameters.

[^2]: Next step
 PAGE (F6) changes to the Heights page.

[^3]: Next step
 CONT (F1) closes the screen and returns to REFLINE Choose Task \& Reference Line.

[^4]: Next step
 PAGE (F6) changes to the Map page.

[^5]: Next step
 PAGE (F6) changes to REFPLANE New Reference Plane, Offset page.

[^6]: Next step
 STORE (F1) returns to WAKE-UP Wake-Up Sessions.

