1. Juni 2005

System1200_Geoid_2004_de.doc

Mit dem Erwerb des neuen **Geoidmodell** 2004 (CHGeo2004R) von der swisstopo erhalten Sie von uns verschiedene

Dateien. Diese sind für die Berechnung der Geoidundulationen der CH-

	CH1903	CH1903+
Interpolations - Datei	CH1903.exe	CH1903+.exe
Ini - Datei	CH1903.ini	CH1903+.ini
Geoidmodell - Datei	CH1903.gem	CH1903+.gem

Landeskoordinaten mit der LGO-Software bzw. den System1200 - Sensoren notwendig.

Detailierte Informationen zum Geoid erhalten Sie im Internet unter der folgenden Adresse: http://www.swisstopo.ch/de/basics/geo/system/geoid

Nachfolgend werden folgende Punkte ausführlich beschrieben:

- Geoidberechnung unter LEICA Geo Office (LGO)
 - Installation "1km Rastergeoidmodell 2004"
 - Integration des Geoidmodells 2004 in ein bestehendes Koordinatensystem
 - Berechnung der Geoidundulation
- Geoidmodell Felddatei für System1200 Sensoren

Geoidberechung unter LEICA Geo Office (LGO)

Als erstes müssen Sie die notwendigen Dateien (so wie dargestellt) in ein beliebiges Verzeichnis auf Ihren PC kopieren.

î Name	Erw
Sa(-)	
CH1903	GXG
Z]CH1903	GEN
GCH 1903	INI
CH1903+	exe
Z]CH1903+	GEN
CH1903+	INI

Installation "1km Rastergeoidmodell 2004"

Nach der erfolgten Installation der LGO-Software müssen noch einige kleine Ergänzungen vorgenommen werden, damit das neue Geoidmodell 2004 entsprechend in die LGO-Software integriert ist.

Starten Sie die LGO-Software, es erscheint die nebenstehend gezeigte Bildschirmoberfläche, durch einmaliges Klicken mit der Maus auf Koordinatensyteme erscheinen auf der rechten Seite die folgenden Verzeichnisse:

Durch Drücken der **rechten Maustaste** auf dem markierten Punkt **Geoid** öffnen Sie das nachfolgende PopUp Menü.

Seite 1/6

LEICA SYSTEM 1200

WORKING

TOGETHER

1. Juni 2005

System1200_Geoid_2004_de.doc

Hier wählen Sie den Punkt Neu... aus !

Es erscheint die untenstehende Eingabemaske, welche Sie mit den Angaben gemäss Ihrer LGO Installation ausfüllen.

Nachfolgend wird das Geoidmodell für den Bezugsrahmen CH1903 definiert.

Name	CHGeo2004R - CH1903		
Koordinatentyp:	Giter 💌		
Blipsoid;	Bessel		
Auf lokaler Seite anw.	a		
Pfad der * EXE- Datei	C:\DATA\LEICA Georgetens\LGO\Geoidm		
Bernerkung:	Invastopo		

 Name: Grundsätzlich frei wählbar, sinnvollerweise jedoch die nebenstehende offizielle Bezeichnung verwenden !
 Koordinatentyp: Gitter
 Ellipsoid: Bessel
 Pfad der *.EXE - Datei: es muss dasjenige Verzeichnis eingebunden werden, in welchem sich die Datei CH1903.exe befindet.

Bemerkung: Freiwillige Eingabe

Am Schluss mit **OK** bestätigen, es sollte dann der untenstehende Bildschirm mit den entsprechend von Ihnen eingegebenen Informationen erscheinen.

Name /	Zuletzt geändert	Koordinatentyp	Ellipsoid	Pfad der EXE.Datei	Bemerkung
A CH1903 - 1km Rastergeoidmodell	31/03/2005 14:18:27	Gitter	Bessel	C:\DATA\LEICA Geosystems\LGO\Geoidmodell\CH_geoid32.exe	
A CH1903+ - 1km Rastergeoidmodel	31/03/2005 14:18:58	Gitter	Bessel	C:\DATA\LEICA Geosystems\LGO\Geoidmodell\CH_geoid9532.exe	
CHGeo2004R - CH1903	01/06/2005 08:31:31	Gitter	Bessel	C:\DATA\LEICA Geosystems\LGO\Geoidmodell\Geoid_2004\CH1903.exe	swisstopo

Selbstverständlich muss auch für den Bezugsrahmen LV95 ein entsprechendes Geoidmodell definiert werden. Dazu einfach die andere EXE-Datei (CH1903+) verwenden.

Seite 2 / 6

Integration des Geoidmodells 2004 in ein bestehendes Koordinatensystem

Wie unten dargestellt, haben wir zum Beispiel ein CH1903-Landeskoordinatensystem (Transformationsparameter (GRANIT90), Ellipsoid und Projektionssystem) definiert, im welchen jetzt noch das **Geoidmodell 2004** fehlt.

Inhalt	Eigenschaft	Wert
 □ CH1903 □ CH1903+ □ CH1903-KKVA □ CH1903-KKVA □ KS IL □ Kein □ LSKS - LV95 □ None □ Sample RT 1200 □ TEST031103 □ Trafo-Bsp 	Name Zuletzt geändert Transformation Transformationstyp Residuen Lokales Ellipsoid Projektion Projektionstyp Geoidmodell LSKS Modell Bemerkung	CH1903 15/03/2004 13:11:44 GRANIT90 Klassisch3D Keine Verteilung Bessel Swiss Länderspezifisch -

Durch Doppelklicken auf die leere Zeile des **Geoidmodell** öffnet sich ein Auswahlfenster wie unten dargestellt. Aus diesem wählen wir jetzt das vorher definierte Modell aus (**CHGeo2004R - CH1903**) und bestätigen die Auswahl mit der Eingabetaste (ENTER).

Jetzt haben wir ein vollständig definiertes Koordinatensystem CH1903, welches immer wieder in verschiedenen Projekten verwendet werden kann.

Eigenschaft	Wert
Name	CH1903
Zuletzt geändert	30/05/2005 10:35:34
Transformation	CH 1903
Transformationstyp	Klassisch3D
Residuen	Keine Verteilung
Lokales Ellipsoid	Bessel
Projektion	Swiss
Projektionstyp	Länderspezifisch
Geoidmodell	CHGeo2004R - CH1903
LSKS Modell	-
Bemerkung	

Seite 3/6

Berechnung der Geoidundulationen

Die eigentliche **Berechnung der Geoidundulationen** erfolgt auf sehr einfache Art und Weise. Als Ausgangslage haben wir ein Projekt, in welchem Punkte im lokalen CH-Koordinatensystem vorliegen, dh: **Landeskoordinaten** und **orthometrische Höhen** (siehe untenstehender Ausschnitt).

Punkt Nr.	Punktklasse	Rechtswert	Hochwert	Ellip. Höhe	Orthom. Höhe	Geoidundulat.
10716516	Kontroll	684722.0500	254218.1300		447.4900	-
20662142	Kontroll	684953.1150	254295.5290	-	425.3170	-
20662195	Kontroll	684626.8090	253957.3990	-	431.1170	-
20662197	Kontroll	684537.6560	254078.0520	-	430.5270	-
20662218	Kontroll	684464.8610	254300.6620	2	427.6030	2
20662322	Kontroll	684923.9550	254440.3260	2	423.2880	2
20663049	Kontroll	685096.1290	254334.7960		425.1090	-

Als nächsten Schritt muss nun über den Menupunkt Extras ⇔ Geoidundulationen berechnen die eigentliche Berechnung der Geoidundulationen ausgelöst werden.

a LEICA Geo Office (DEMONSTRATION VERSION) - [Projekt aaa]									
📇 <u>D</u> atei	<u>E</u> ingabe	<u>B</u> earbeiten	<u>A</u> nsicht	E <u>x</u> tras	Punkte	A <u>u</u> sgabe	<u>F</u> enster	<u>H</u> ilfe	
0 🚔	a	h 🕫 候	ı 🦙 🔍	Geo	idundulat	ion <u>b</u> erechr	nen	N	ŧ
				Unz	ugänglich	e Punkte b	erechnen	45	E
Geoffnet	e Dokume	nte Punkt	Nr.	<u>G</u> eo	idmodell F	Felddatei er	zeugen		<u>0</u>

Als Resultat erhalten Sie die untenstehende Meldung und die entsprechenden Werte für die automatisch berechneten ellipsoidischen Höhen und die Geoidundulationen.

Punkt Nr.	Punktklasse	Rechtswert	Hochwert	Ellip. Höhe	Orthom. Höhe	Geoidundulat.
10716516	Kontroll	684722.0500	254218.1300	447.5743	447.4900	0.0843
20662142	Kontroll	684953.1150	254295.5290	425.4030	425.3170	0.0860
20662195	Kontroll	684626.8090	253957.3990	431.1922	431.1170	0.0752
20662197	Kontroll	684537.6560	254078.0520	430.6070	430.5270	0.0800
20662218	Kontroll	684464.8610	254300.6620	427.6914	427.6030	0.0884
20662322	Kontrol		(2010)		423.2880	0.0915
20663049	Kontrol	EICA Geo Offic	e (DEMONSTRA	TION V	425.1090	0.0869
20663058	Kontrol				0.0000	0.0867
20663160	Kontrol	1) Geoidundu	lation erfolgreich be	rechnet	429.4020	0.0830
20663338	Kontrol	~			421.2550	0.0944
20663339	Kontrol				421.5910	0.0921
20663367	Kontrol	Zukunftig nicht n	nehr anzeigen	<u>0</u> K	426.0970	0.0849
20663421	Kontrol				422.1500	0.0979

Es gilt zu beachten, dass beim Import von RealTime-Messdaten, welche in einem lokalen Koordinatensystem (zBsp: CH1903), gemessen wurden, nach dem Import in die LGO nur mit der ellipsoidischen Höhe dargestellt werden. Es muss dann zwingend jedesmal noch die Geoidberechnung durchgeführt werden.

Seite 4/6

WORKING

1. Juni 2005

Geoidmodell Felddatei für System1200 - Sensoren

Sie haben auch eine sogenannte **Geoidmodell Felddatei** (CH1903.gem) von uns erhalten. Diese Datei ist notwendig, damit auf den System1200 Sensoren auch die Geoidundulation im Felde berechnet werden kann.

Die Begrenzung dieser Feld-Datei ist so gewählt, dass die ganze Schweiz abgedeckt wird, dh: Sie benötigen nur diese Datei auf dem Sensor für die Geoidberechnung in der ganzen Schweiz !

14:40 MANABE	0 120	相 言思	
Edit Geoid	incdell	COLUMN COLUMN	X
Nano	1	CH1903	
Felddatei	1	CH1903.GEH	
Erstellt		01.01.03	
Zeit	1	00:00:00	
Oben recht	ts		*
Ost	200 (-)	\$40000.000	1
Nord	2	302000.000	100
Unten link	(5		-
Ost	8 (g)	480000.000	111
Nord		60000.000	
Abstand NS	s :	1000.000	
Abstand 0)	4 E	1000.000	1 -
WEITR	1 1	1 1	аû

Sie können die Datei CH1903.gem direkt auf die CF-Speicherkarte in das Verzeichnis: *Data - GPS - Geoid* kopieren. Anschliessend sollte die Geoidmodell Felddatei in den Systemspeicher des Instrumentes kopiert werden. *Dadurch steht das Geoidmodell immer zur Verfügung, auch wenn die Speicherkarte formatiert werden sollte !*

Dazu bitte auf dem Sensor 6 Tools- 2 Transfer Objekte ... - 04 Geoid Felddateien auswählen ...

... und die notwendigen Einstellungen vornehmen, damit die gewünschte Geoidmodell Felddatei von der CF-Speicherkarte in den System RAM (des Sensors) kopiert wird.

Mit WEITR (F1) fortfahren.

Nun muss die Geoidmodell Felddatei noch mit dem entsprechenden Koordinatensystem CH1903 verknüpft werden. Dazu bitte auf dem Sensor **3** Manage - **4** Koordinatensysteme auswählen ...

... hier das Koordinatensystem CH1903 markieren und mit EDIT (F3) aufrufen.

Hier dann die Zeile **Geoidmodell** markieren und mit **ENTER** fortfahren.

14:14	9.4	1.7 27 新	
Edit Koordi	naton	system	×
Name	10		CH1903
Residuen	1.1	Geine Vert	teilung 🔶
Transform	12	Granit9	i0(L+T) 纳
Projektion			Swiss 🔶
Geoidmode11	:	<kc< td=""><td>in(e)>+</td></kc<>	in(e)>+
LSKS Hodell	12	<ke< td=""><td>in(e)><u>+</u></td></ke<>	in(e)> <u>+</u>
SPEIC	1	1	100

LEICA SYSTEM 1200

WORKING TOGETHER

Seite 5/6

1. Juni 2005

System1200_Geoid_2004_de.doc

Hier nun die gewünschte **Geoidmodell Felddatei (CH1903)** auswählen. Anschliessend mit **WEITR (F1)** fortfahren. Dann noch **SPEICH (F1)** drücken (damit wird das komplette Koordinatensystem gespeichert).

Anschliessend noch WEITR (F1) drücken für die Rückkehr ins Hauptmenü.

Bitte beachten Sie, dass es für die beiden Bezugsrahmen CH1903 und CH1903+ auch zwei Geoidmodelle auf dem Sensor braucht (analog in der LGO). Für das Geoidmodell CH1903+ gehen Sie bitte entsprechend der Anleitung für das Geoidmodell CH1903 vor.

Seite 6/6

