

4

5 6

8

7

9

IU 11 12 13 14 15 16

Indoor Positioning

13.10.2010 15:30 - 16:30 HIL D53

Prof. Dr. H. Ingensand Geodetic Metrology and Engineering Geodesy

12.10.2010

Contents

1. Applications – Criteria – Overview

- 2. Positioning Techniques
 - Optical
 - Ultrasound
 - IGPS
 - High Sensitive GNSS
 - Pseudolites
 - other
- 4. Conclusions & Outlook

(Indoor-)

- Positioning
- Position determination
- Navigation $\leftarrow \rightarrow$ Tracking
- Locating (Ortung)
- Localisation (Lokalisierung)

Applications

Which performances should system meet?

- reliable
- fast
- safe
- accurate
- compatible to personal assistance systems
- ubiquitous
- real-time
- cheap
- ...?

System Criteria

- Signal wavelength (Radio Frequencies, Light Waves, Ultrasound, RFID)
- Principle (trilateration, triangulation, signal strength)
- Active / passive sensors
- Application (industry, surveying, navigation)
- Costs
- Market Maturity (design, development, product)
- Infrastructure (deployed beacons, GIS)
- Coverage (room, building, city)
- Accuracy (µm decametres)

Components of Indoor Positioning Systems

Classification criteria for 3D models of indoor space

- Creation process: Construction / <u>Reconstruction*</u>
- Geometric Modeling:
- Constructive Solid Geometry / <u>Boundary Representation*</u>

The CityGML indoor space model

The CityGML indoor space model

Room

• class: z.B. 1070 = education, research

- function/usage: z.B. 2720 = prison cell
- boundedBy: → FloorSurface-, InteriorWallSurface objects
- interiorFurniture: \rightarrow BuildingFurniture objects
- roomInstallation: \rightarrow InteriorBuildingInstallation objects

FloorSurface

lod4MultiSurface: Geometry

InteriorWallSurface • lod4MultiSurface: Geometry • opening: → door objects

Door

lod4MultiSurface: Geometry address: room number etc.

InteriorBuildingInstallation

class: e.g. 6000 = staticsfunction/usage: e.g. 7020 = column

BuildingFurniture

- class: e.g. 1100 = education, research
- function/usage: e.g. 1230 = desk
- Iod4ImplicitRepresenation: CAD drawing

Overview Indoor Positioning Techniques

Optical Systems

CLIPS – Camera and Laser-based Indoor Positioning System

- Central idea is based on stereo photogrammetry
- Instead of two cameras => calibrated camera + calibrated "laser-hedgehog"
- Main functions of the "laser-hedgehog":
 - Projection of reference points
 - Inverse Camera (Simulation of the second camera)
 - Use of a computational cheap point detection

CLIPS - Point Detection

- Criteria
 - Independent from illumination
 - Reliable
 - Fast

- Algorithm
 - Combination of the RGB channels
 - Generic, adaptive template matching
 - ~ 1 sec / image with a resolution of 1024 x 768 pixels

Goal:

Determination of translation and rotation of the camera with respect to the laser-hedgehog

Describing the relative orientation with the six parameters of the exterior orientation

- base vector b: bx, by, bz
- rotation of camera: ω , ϕ , κ

CLIPS - Relative Camera Orientation

Assessment of the Prototype

- Determination of the 3D laser spot coordinates via a totalstation and CLIPS
- Accuracy: Comparision of both point clouds via similarity transformation

Measure	Value	
scale m	0.9981	
Standard deviation σ_0 [mm]	0.6	

• **Precision:** Repetitive CLIPS measurements for each camera position

σ _× [mm]	σ _ν [mm]	σ₂ [mm]
0.16	0.16	0.35

Optical Positioning Systems: ProCam System (AICON)

System	Principle	Outdoor	Indoor	Real- time	Accuracy	Range	Signal Frequency	Data Rate	Market	Cost
ProCam	optical	×	\checkmark	\checkmark	0.1 mm	any room	infrared	90 points / h	yes	high

Mobile probe with CCD camera. Spatial resection of measuring head.

> relies on coded reference targets. (illuminated by an infrared flash)

Pictures from: http://www.aicon.de

Range Imaging as measuring method

- combined CMOS/CCD-technology
- parallel acquisition of local brightness and range
- distance is measured by time-of-flight (TOF) principle for each pixel

- Range Imaging:
 - dynamic measuring of 3D-coordinates in real time → acquiring rooms in their orientation + included objects
 - limits: relatively small range of ambiguity of the camera, mixed pixels, disturbing objects

Room identification through object detection using the CityGML database

Measurement examples

Ultra Sound Systems

Ultrasound Systems – Crickets, Active Bat, Dolphin

System	Principle	Outdoor	Indoor	Real- time	Accuracy	Range	Signal Frequency	Data Rate	Market	Cost
Cricket	TOA, lateration	×	~	~	1 – 2 cm	10 m	ultrasound	1 Hz	develop ment	low
Active Bat	TOA, lateration	×	~	~	1 – 5 cm	1000 m ²	ultrasound	75 Hz	no	moderate
DOLPHIN	TOA, lateration	×	~	~	2 cm	room scale	ultrasound	20 Hz	no	moderate

Method:

- ➤ TOA, TDOA (ultrasound & RF)
- ➤ Multilateration

Ultrasound Systems – Crickets

Student Project: Robot Positioning

Problems:

- dependency on temperature
- ➤ maximal range
- deployment of reference beacons
- ➤ multipath
- ➤ reliability
- \succ interference with other sound sources

Received Signal Strength (RSS) Fingerprinting

System	Principle	Outdoor	Indoor	Real- time	Accuracy	Range	Signal Frequency	Data Rate	Market	Cost
Sonitor	RSSI, Cell ID	×	~	~	m-level	15 m	ultrasound	0.3 Hz	yes	low
RFID	Signal Strength	×	~	~	dm-m	20 m	RF, 866 MHz		no	low

All signals can be used:

WLAN, Ultrasound, RF, GPRS, etc.

Problems:

➤ reliability

➤ accuracy

USC Robotics Research Lab

Signal Strength Methods: Practical lessons

RSSI in sensor networks: good, but not for "reasonable" localization

For practical indoor localization

- Buy special hardware (e.g., UWB)
- Place huge amount of short range anchors for single-hop localization

Time of Arrival

Ultra Wide Band

Ultra-Wideband (UWB)

- Discard the usual dedicated frequency band paradigm.
- Instead share a large spectrum (about 1-10 GHz).
- Use extremely short duration pulses (sub-nanosecond) instead of continuous waves to transmit information. Depending on application 1M-2G pulses/second

Advantages:

- Potential to penetrate walls
- Robust towards multipath

Measurements

Parameter estimation

System calibration Background subtraction Threshold detection LS estimator

Data fusion

Х

angle

• time delay (ToA, TDoA)

amplitude

Least Squares Adjustment

Geodetic Systems & Industrial Metrology

iGPS (Nikon)

iGPS transmitter and sensor during a test in a tunnel

AoA Measurements: iGPS "laser resection"

Principle	Outdoor	Indoor	Real- time	Accuracy	Range	Signal Frequency	Data Rate	Market	Cost
TOA angular measurements	~	~	~	0.1 – 0.2 mm	2 - 50 m	RF	40 Hz	in progress	high

Key design:

- ➤ two or more fixed transmitters
- rotating fan-shaped laser beams
- ➤ infrared signal
- various sensors detect arrival times
- position determination with spatial forward intersection

Application of iGPS in a tunnel.

Master Thesis, ETH Zurich by DAVID ULRICH: Innovative Positionierungssysteme im Untertagebau, July 2008

Results

Strengths:

- High accuracy (0.1 mm) confirmed
- Real-time, 40 Hz confirmed

Problems:

- Multipath
- Influence of light sources

Radar Systems

High Sensitive GNSS

System	Principle	Cove	Coverage				Data		
		Outdoor	Indoor	time	Accuracy	Range	Rate	Market	Cost
Geodetic GNSS	TOA, lateration, differential technique	(*)	×		mm	global	20 Hz	yes	moderate to high

Outdoors:

```
Globally available (besides urban canyons)
```

Fully developed

Correction model well known (ionosphere, troposphere)

mm – cm accuracy

Needs line of sight to sattelites

indoors additionally:

➤ strong attenuation

fading: reflections, diffraction, scattering

- ➢ no general model
- severe multipath

GNSS Attenuation of building materials (L1 = 1500 MHz)

Material	[dB]	Factor [-]
Glass	1 - 4	0.8 – 0.4
Painted Glass	10	0.1
Wood	2 - 9	0.6 – 0.1
Roofing Tiles / Bricks	5 - 31	0.3 – 0.001
Concrete	12 - 43	0.06 – 0.00005
Ferro-Concrete	29 - 33	0.001 – 0.0005

Stone (1997)

Signal Strength in Decibel Watt of GNSS Satellites

Environment	[dBW]	
Satellite	+14	signal strength delivered from satellite
Outdoors	-155	unaided fixes OK for standard receivers
Indoors	-176	decode limit for high sensitive receivers
Underground	-191	decode limit for aided, ultra-high sensitive receivers

High Sensitive GNSS Receiver

Application: Emergency Calls, LBS

SiRFStar III (> 200.000 Korrelators) Global Locate A-GPS Chip (Assisted-GPS)

Strengths:

No additional infrastructure in buildings Also helpful in GNSS difficult environments with signal shadowing

Drawbacks:

Long Acquisition TTFF: 60 s (assisted: 12 s) Computational expensive Accuracy: 14 m (evaluation from Thales) 6 m (forest)

How could theses issues be solved?

- > phase measurement \rightarrow cm
- higher signal amplitude at satellite
- efficient parallel computing
- Ultra Wideband GNSS Signals

Pseudolite Positioning Systems

Terrestrial pseudolite transceivers, Locata Corporation in Canberra Augmentation for GNSS in urban canyons, pit mines, buildings

Picture from Jonas BERTSCH: *On-the-fly Ambiguity Resolution for the Locata Positioning System*, Master Thesis, ETH Zurich, February 2009.

System	Principle	Outdoor	Indoor	Real- time	Accuracy	Range	Signal Frequency	Data Rate	Market	Cost
Locata	TOA, lateration	~	~	~	2 mm static 1 cm RTK,	2 - 3 km	RF	1 Hz	in progress	high

(+) RTK: 1 – 2 cm deviations at 2.4 m/s
(+) signal magnitude stronger than GNSS
(+) indoors dm

Challanges:

multipath (low elevation)

Synchronisation < 30 pico-seconds

RFID Systems

Magnetic Systems

Pedestrian Navigation

Pedestrian Navigation – Foot Mounted INS

Inertial Systems (Dead Reckoning Systems)

- Positioning by integrating accelerations and velocities with permanent motion pattern analysis
- Many problems have to be solved:
 - Noise
 - Drift

- stable average
- Temperature
- Calibration
- Accuracy
- Position, velocity, and orientation from foot mounted IMU
- ZUPT (zero velocity updates) to limit error growth

Xsense MTi